Skip to main content

Advertisement

Log in

Carbon-encapsulated MnFe2O4 nanoparticles: effects of carbon on structure, magnetic properties and Cr(VI) removal efficiency

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the influences of carbon on structure, magnetic properties and Cr(VI) absorption efficiency of carbon-encapsulated MnFe2O4 nanoparticles (MFO/C NPs) are studied. SEM images indicate that the fabricated MnFe2O4 nanoparticles (MFO NPs) are enveloped by carbon layers, forming encapsulating structure. By the BET analysis, it is demonstrated that the average specific surface area of MFO/C samples is higher than that MFO sample. From FTIR and XPS spectra, the presence of carbon-coated MnFe2O4 nanoparticles is confirmed. It is found that the Cr(VI) absorption efficiency of the MFO/C NPs first increases to reach the maximum value at 5% C concentration, and then decreases with the further increment of C concentration. The maximum absorption efficiency and capacity of 90.1% and 73.26 mg/g are obtained, respectively. Finally, a removal mechanism for the removal of Cr(VI) is proposed. The obtained results demonstrate that the carbon-encapsulated MnFe2O4 NPs is a promising candidate as an advanced absorbent for the removal of Cr(VI) from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.J.M. Saeedi, Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environ. Earth Sci. 70, 1791 (2013). https://doi.org/10.1007/s12665-013-2267-5

    Article  Google Scholar 

  2. J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 39, 4528–4536 (2005). https://doi.org/10.1016/j.watres.2005.05.051

    Article  Google Scholar 

  3. K.P. Singh, A.K. Singh, S. Gupta, S. Sinha, Optimization of Cr (VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach. Desalination 270, 275–284 (2011). https://doi.org/10.1016/j.desal.2010.11.056

    Article  Google Scholar 

  4. L. Alidokht, A.R. Khataee, A. Reyhanitabar, S. Oustan, Reductive removal of Cr (VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270, 105–110 (2011). https://doi.org/10.1016/j.desal.2010.11.028

    Article  Google Scholar 

  5. B. Eyvazi, A. Jamshidi-zanjani, A. Khodadadi, Synthesis of nano-magnetic MnFe2O4 to remove Cr (III) and Cr (VI) from aqueous solution: a comprehensive study. Environ. Pollut. 29, 113685 (2019). https://doi.org/10.1016/j.envpol.2019.113685

    Article  Google Scholar 

  6. L. Shao, Z. Ren, G. Zhang, L. Chen, Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal. Mater. Chem. Phys. 135, 16–24 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.035

    Article  Google Scholar 

  7. T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod. 83, 413–419 (2014). https://doi.org/10.1016/j.jclepro.2014.07.006

    Article  Google Scholar 

  8. K.P. Gadkaree, Carbon honeycomb structures for adsorption applications. Carbon 36, 981–989 (1998). https://doi.org/10.1016/S0008-6223(97)00230-3

    Article  Google Scholar 

  9. D. Clifford, P. Chu, A. Lau, Thermal regeneration of powdered activated carbon (pac) and pac-biological sludge mixtures. Water Res. 17, 1125–1138 (1983). https://doi.org/10.1016/0043-1354(83)90053-2

    Article  Google Scholar 

  10. G. Zhang, H. Liu, A.T. Cooper, R. Wu, CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68, 1058–1066 (2007). https://doi.org/10.1016/j.chemosphere.2007.01.081

    Article  ADS  Google Scholar 

  11. N. Yang, S. Zhu, D. Zhang, S. Xu, Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater. Lett. 62, 645–647 (2008). https://doi.org/10.1016/j.matlet.2007.06.049

    Article  Google Scholar 

  12. D. Fabris, V. Garg, K. Sapag, L.C.A. Oliveira, R.V.R.A. Rios, R.M. Lago, Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40, 2177–2183 (2002). https://doi.org/10.1016/S0008-6223(02)00076-3

    Article  Google Scholar 

  13. K. Lu, F. Yang, W. Lin, S. Zhou, T. Xi, C. Song, Y. Kong, Stabilized pony-sized-CuFe2O4/carbon nitride porous composites with boosting fenton-like oxidation activity. Chem. Sel. 3, 4207–4216 (2018). https://doi.org/10.1002/slct.201800843

    Article  Google Scholar 

  14. J. Du, W. Xu, J. Liu, Z. Zhao, Efficient degradation of Acid Orange 7 by persulfate activated with a novel developed carbon-based MnFe2O4 composite catalyst. J. Chem. Technol. Biotechnol. 95, 1135–1145 (2019). https://doi.org/10.1002/jctb.6298

    Article  Google Scholar 

  15. C.A. Backes, R.G. Mclaren, A.W. Rate, R.S. Swift, Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Sci Soc Am J. 59, 778–785 (1988). https://doi.org/10.2136/sssaj1995.03615995005900030021x

    Article  Google Scholar 

  16. I. Nazionale, E. Division, Eddy-Current Losses in Mn–Zn Ferrites. IEEE T Magn. 50, 6300109 (2014). https://doi.org/10.1109/TMAG.2013.2279878

    Article  Google Scholar 

  17. G. Wang, D. Zhao, F. Kou, Q. Ouyang, J. Chen, Z. Fang, Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): Kinetics, mechanism and degradation pathway. Chem. Eng. J. 351, 747–755 (2018). https://doi.org/10.1016/j.cej.2018.06.033

    Article  Google Scholar 

  18. S.V. Bhandare, R. Kumar, A.V. Anupama, H.K. Choudhary, V.M. Jali, B. Sahoo, Annealing temperature dependent structural and magnetic properties of MnFe2O4 nanoparticles grown by sol-gel auto-combustion method. J. Magn. Magn. Mater. 433, 29–34 (2017). https://doi.org/10.1016/j.jmmm.2017.02.040

    Article  ADS  Google Scholar 

  19. W. Li, C. An, H. Guo, Y. Zhang, K. Chen, Z. Zhang, G. Liu, Y. Liu, Y. Wang, The encapsulation of MnFe2O4 nanoparticles into the carbon framework with superior rate capability for lithium-ion batteries. Nanoscale 12, 4445 (2020). https://doi.org/10.1039/c9nr10002d

    Article  Google Scholar 

  20. Z. Zhang, D. Zhou, S. Zou, X. Bao, X. He, One-pot synthesis of MnFe2O4/C by microwave sintering as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J. Alloys Compd. 786, 565–569 (2019). https://doi.org/10.1016/j.jallcom.2019.02.015

    Article  Google Scholar 

  21. M. Gorgizadeh, N. Behzadpour, F. Salehi, F. Daneshvar, R.D. Vais, N. Azarpira, M. Lotfi, N. Sattarahmady, A MnFe2O4/C nanocomposite as a novel theranostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanoma cancer model. J. Alloys Compd. 816, 152597 (2019). https://doi.org/10.1016/j.jallcom.2019.152597

    Article  Google Scholar 

  22. P. Kidkhunthod, S. Nilmoung, S. Mahakot, S. Rodporn, Journal of magnetism and magnetic materials a structural study and magnetic properties of electrospun carbon/manganese ferrite (C/MnFe2O4) composite nano fibers. J. Magn. Magn. Mater. 401, 436–442 (2016). https://doi.org/10.1016/j.jmmm.2015.10.085

    Article  ADS  Google Scholar 

  23. H. Pang, R.P. Sahu, Y. Duan, I.K. Puri, Diamond and Related Materials MnFe2O4 -coated carbon nanotubes with enhanced microwave absorption : Effect of CNT content and hydrothermal reaction time. Diam. Relat. Mater. 96, 31–43 (2019). https://doi.org/10.1016/j.diamond.2019.04.027

    Article  ADS  Google Scholar 

  24. Y. Yan, G. Guo, T. Li, D. Han, J. Zheng, J. Hu, D. Yang, A. Dong, Carbon-coated MnFe2O4 nanoparticle hollow microspheres as high-performance anode for lithium-ion batteries. Electrochim. Acta. 246, 43–50 (2017). https://doi.org/10.1016/j.electacta.2017.06.020

    Article  Google Scholar 

  25. Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, Jun C, MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 16, 3321–3328 (2016). https://doi.org/10.1021/acs.nanolett.6b00942

    Article  ADS  Google Scholar 

  26. L. Yang, Y. Zhang, X. Liu, X. Jiang, Z. Zhang, T. Zhang, L. Zhang, The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem. Eng. J. 246, 88–96 (2014). https://doi.org/10.1016/j.cej.2014.02.044

    Article  Google Scholar 

  27. D. Yunchen, L. Wenwen, Q. Rong, W. Ying, H. Xijiang, M. Jun, X. Ping, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces. 6, 12997–13006 (2014). https://doi.org/10.1021/am502910d

    Article  Google Scholar 

  28. J. Zheng, Z.Q. Liu, X.S. Zhao, M. Liu, X. Liu, W. Chu, One-step solvothermal synthesis of Fe3O4@C core-shell nanoparticles with tunable sizes. Nanotechnology. 23, 165601 (2012). https://doi.org/10.1088/0957-4484/23/16/165601

    Article  ADS  Google Scholar 

  29. K. Cheng, Y.M. Zhou, Z.Y. Sun, H.B. Hu, H. Zhong, X.K. Kong, Q.W. Chen, Synthesis of carbon-coated, porous and water-dispersive Fe3O4 nanocapsules and their excellent performance for heavy metal removal applications. Dalton Trans. 41, 5854–5861 (2012). https://doi.org/10.1039/C2DT12312F

    Article  Google Scholar 

  30. A. Goyal, S. Bansal, P. Samuel, S. Singhal, CoMn0.2Fe1.8O4 ferrite nanoparticles engineered by sol–gel technology: an expert and versatile catalyst for the reduction of nitroaromatic compounds. J. Mater. Chem. A Mater. Energy Sustain. 2, 18848–18860 (2014). https://doi.org/10.1039/C4TA03900A

    Article  Google Scholar 

  31. D.A. Links, K. Cheng, Y. Zhou, Z. Sun, H. Hu, H. Zhong, X. Kong, Q. Chen, Synthesis of carbon-coated, porous and water-dispersive Fe3O4 nanocapsules dand their excellent performance for heavy metal removal applications. Dalton Trans. 41, 5854–5861 (2012). https://doi.org/10.1039/c2dt12312f

    Article  Google Scholar 

  32. P.T.L. Huong, L.T. Huy, H. Lan, L.H. Thang, T.T. An, N. Van Quy, P.A. Tuan, J. Alonso, M.H. Phan, A.T. Le, Magnetic iron oxide-carbon nanocomposites: Impacts of carbon coating on the As(V) adsorption and inductive heating responses. J. Alloys Compd. 739, 139–148 (2018). https://doi.org/10.1016/j.jallcom.2017.12.178

    Article  Google Scholar 

  33. P.T.L. Huong, N. Tu, H. Lan, L.H. Thang, N.V. Quy, P.A. Tuan, N.X. Dinh, V.N. Phan, A.T. Le, Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As (V) ions from aqueous solution. RSC Adv. 8, 12376–12389 (2018). https://doi.org/10.1039/C8RA00270C

    Article  Google Scholar 

  34. L. Geng, F. Yan, C. Dong, C. An, Design and regulation of novel MnFe2O4@C nanowires as high performance electrode for supercapacitor. Nanomaterials 9, 777 (2019). https://doi.org/10.3390/nano9050777

    Article  Google Scholar 

  35. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, Graphene oxide—MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces. 6, 17426–17436 (2014). https://doi.org/10.1021/am504826q

    Article  Google Scholar 

  36. O. Ajouyed, C. Hurel, M. Ammari, L. Ben, N. Marmier, Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 174, 616–622 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.096

    Article  Google Scholar 

  37. Y. Zhao, W. Qi, G. Chen, M. Ji, Z. Zhang, Behavior of Cr(VI) removal from wastewater by adsorption onto HCl activated Akadama clay. J. Taiwan Inst. Chem. Eng. 50, 190–197 (2015). https://doi.org/10.1016/j.jtice.2014.12.016

    Article  Google Scholar 

  38. Y. Shi, R. Shan, L. Lu, H. Yuan, H. Jiang, Y. Zhang, Y. Chen, High-efficiency removal of Cr(VI) by modified biochar derived from glue residue. J. Clean. Prod. 254, 119935 (2020). https://doi.org/10.1016/j.jclepro.2019.119935

    Article  Google Scholar 

  39. N. Ngoc, P. Thi, B. Hanh, L. Thi, T. Ha, L. Ngoc, T. Vinh, Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Mater. Sci. Eng. C. 33, 1214–1218 (2013). https://doi.org/10.1016/j.msec.2012.12.013

    Article  Google Scholar 

  40. M. Taghizadeh, S. Hassanpour, Selective adsorption of Cr(VI) ions from aqueous solutions using a Cr(VI)-imprinted polymer supported by magnetic multiwall carbon nanotubes. Polymer (Guildf). 132(1–11), 1–11 (2017). https://doi.org/10.1016/j.polymer.2017.10.045

    Article  Google Scholar 

  41. Y.C. Sharma, V. Srivastava, Comparative studies of removal of Cr(VI) and Ni(II) from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data. 56, 819–825 (2011). https://doi.org/10.1021/je100428z

    Article  Google Scholar 

  42. T. Altun, H. Ecevit, Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads. Korean Soc. Environ. Eng. 25, 426–438 (2020). https://doi.org/10.4491/eer.2019.112

    Article  Google Scholar 

  43. Y. Xiao, H. Liang, Z. Wang, MnFe2O4/chitosan nanocomposites as a recyclable adsorbent for the removal of hexavalent chromium. Mater. Res. Bull. 48, 3910–3915 (2013). https://doi.org/10.1016/j.materresbull.2013.05.099

    Article  Google Scholar 

  44. N. Li, F. Fu, J. Lu, Z. Ding, B. Tang, J. Pang, Facile preparation of magnetic mesoporous MnFe2O4@SiO2−CTAB composites for Cr(VI) adsorption and reduction. Environ. Pollut. 220, 1376–1385 (2017). https://doi.org/10.1016/j.envpol.2016.10.097

    Article  Google Scholar 

  45. K.L. Bhowmik, A. Debnath, R.K. Nath, B. Saha, Synthesis of MnFe2O4 and Mn3O4 magnetic nano-composites with enhanced properties for adsorption of Cr(VI): artificial neural network modeling. Water Sci. Technol. 76, 3368–3378 (2017). https://doi.org/10.2166/wst.2017.501

    Article  Google Scholar 

Download references

Acknowledgement

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2019.32.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Tu or P. T. L. Huong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuyen, T.V., Chi, N.K., Tien, D.T. et al. Carbon-encapsulated MnFe2O4 nanoparticles: effects of carbon on structure, magnetic properties and Cr(VI) removal efficiency. Appl. Phys. A 126, 577 (2020). https://doi.org/10.1007/s00339-020-03760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03760-7

Keywords

Navigation