Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T06:03:09.364Z Has data issue: false hasContentIssue false

Catalysis using metal–organic framework-derived nanocarbons: Recent trends

Published online by Cambridge University Press:  30 June 2020

Oxana V. Kharissova
Affiliation:
Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, N.L., México
Boris I. Kharisov*
Affiliation:
Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, N.L., México
Igor Efimovich Ulyand
Affiliation:
Chemistry Department, Southern Federal University, Rostov-on-Don344006, Russia
Tomas Hernandez García
Affiliation:
Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, N.L., México
*
a)Address all correspondence to this author. e-mail: bkhariss@hotmail.com
Get access

Abstract

Recent trends in the area of catalytic applications of metal–organic framework (MOF)-derived nanocarbons are covered. These highly porous nanostructures, convenient for the green chemistry processes, are generally formed by the direct carbonization of a variety of MOF, mainly MOF-5, ZIF-8, ZIF-67, UiO-66-NH2, MIL-101-NH2 at 700–1000 °C in argon or nitrogen flow. Differences between conventional porous carbons and MOF-derived carbons are in pore volumes, surface area, and presence of ad-atoms. The morphology of the MOF-derived nanocarbons can be adjustable with uniform dopant distribution. Resulting nanocarbons are widely applied in heterogeneous catalysis, photocatalysis and are very promising as electrocatalysts, having excellent performance in oxygen evolution reaction, oxygen reduction reaction, and hydrogen evolution reaction. Catalytic applications for environmental purposes are also discussed. Good catalytic performance is related with highly dispersed heteroatoms, density of catalytic active sites, controllable porosity, and high surface area. Opportunities for further research are indicated, in particular, the creation of low pH-stable electrocatalysts and novel strategies for the preparation of 1÷3D single-atom catalysts.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Figueiredo, J.L.: Application of nanocarbon materials to catalysis. In Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection, Van de Voorde, M. and Sels, B., eds. (Wiley, NY, 2017).Google Scholar
Sheng Su, D., Perathoner, S., and Centi, G.: Nanocarbons for the development of advanced catalysts. Chem. Rev. 113(8), 57825816 (2013).Google Scholar
Shen, K., Chen, X., Chen, J., and Li, Y.: Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6(9), 58875903 (2016).CrossRefGoogle Scholar
Dang, S., Zhu, Q.-L., and Xu, Q.: Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3, 17075 (2018).CrossRefGoogle Scholar
Ran, F. and Chen, S.: Advanced Nanomaterials for Electrochemical-Based Energy Conversion and Storage (Elsevier Science, Lausanne, 2019), p. 416.Google Scholar
Bin Wu, H. and Lou, X.W.D.: Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 3(12), eaap9252 (2017).Google Scholar
Gonen, S. and Elbaz, L.: Comparison of new metal organic framework-based catalysts for oxygen reduction reaction. Data Brief 19, 281287 (2018).CrossRefGoogle ScholarPubMed
Fu, S., Song, J., Zhu, C., Du, D., and Lin, Y.: Chapter 8. Metal-organic frameworks based porous carbons for oxygen reduction reaction electrocatalysts for fuel cell applications. In Nanocarbon Electrochemistry, Yang, N., Zhao, G., and Foord, J., eds. (Wiley, NY, 2019).Google Scholar
Fu, S., Zhu, C., Song, J., Du, D., and Lin, Y.: Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 7(19), 1700363 (2017).CrossRefGoogle Scholar
Gonen, S. and Elbaz, L.: Metal-organic frameworks as catalysts for oxygen reduction. Curr. Opin. Electrochem. 9(18), 179188 (2018).CrossRefGoogle Scholar
Ge, L., Yang, Y., Wang, L., Zhou, W., De Marco, R., Chen, Z., Zou, J., and Zhu, Z.: High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon 82, 417424 (2015).CrossRefGoogle Scholar
Jiao, L., Wang, Y., Jiang, H.-L., and Xu, Q.: Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 30(37), 1703663 (2017).CrossRefGoogle ScholarPubMed
Kung, C.-W., Han, P.-C., Chuang, C.-H., and Wu, K.C.-W.: Electronically conductive metal–organic framework-based materials. APL Mater. 7, 110902 (2019).CrossRefGoogle Scholar
Pérez-Mayoral, E., Matos, I., Bernardo, M., and Fonseca, I.M.: New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons. Catalysts 9(2), 133 (2019).CrossRefGoogle Scholar
Song, L., Xu, T., Gao, D., Hu, X., Li, C., Li, S., and Chen, G.: Metal–organic framework (MOF)-derived carbon-mediated interfacial reaction for the synthesis of CeO2−MnO2 catalysts. Chem. Eur. J. 25(26), 66216627 (2019).CrossRefGoogle ScholarPubMed
Zhang, J., An, B., Hong, Y., Meng, Y., Hu, X., Wang, C., Lin, J., Lin, W., and Wang, Y.: Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation. Mater. Chem. Front. 1, 24052409 (2017).CrossRefGoogle Scholar
Lin, X., Wang, S., Tu, W., Hu, Z., Ding, Z., Hou, Y., Xu, R., and Dai, W.: MOF-derived hierarchical hollow spheres composed of carbon-confined Ni nanoparticles for efficient CO2 methanation. Catal. Sci. Technol. 9, 731738 (2019).CrossRefGoogle Scholar
Yang, Q., Yang, C.-C., Lin, C.-H., and Jiang, H.-L.: Metal–organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 58, 35113515 (2019).CrossRefGoogle ScholarPubMed
Xu, Y., Mo, J., Xie, G., Ding, D., Ding, S., Wang, X., and Li, C.: MOF-derived Co1.11Te2 with half-metallic characteristic for efficient photochemical conversion of CO2 under visible-light irradiation. Chem. Commun. 55, 68626865 (2019).CrossRefGoogle Scholar
Kidanemariam, A., Lee, J., and Park, J.: Recent innovation of metal-organic frameworks for carbon dioxide photocatalytic reduction. Polymers 11, 2090 (2019).CrossRefGoogle ScholarPubMed
Li, X., Zhang, J., Han, Y., Zhu, M., Shang, S., and Li, W.: MOF-derived various morphologies of N-doped carbon composites for acetylene hydrochlorination. J. Mater. Sci. 53, 49134926 (2018).CrossRefGoogle Scholar
Li, X., Zhang, B., Fang, Y., Sun, W., Qi, Z., Pei, Y., Qi, S., Yuan, P., Luan, X., Goh, T.-W., and Huang, W.: Metal-organic framework derived carbons: Applications as solid base catalyst and support for Pd nanoparticles in tandem. Catalysis 23(18), 42664270 (2017).Google ScholarPubMed
Feng, Y., Jia, W., Yan, G., Zeng, X., Sperry, J., Xu, B., Sun, Y., Tang, X., Lei, T., and Lin, L.: Insights into the active sites and catalytic mechanism of oxidative esterification of 5-hydroxymethylfurfural by metal-organic frameworks-derived N-doped carbon. J. Catal. 381, 570578 (2020).CrossRefGoogle Scholar
Li, H., Chi, L., Yang, C., Zhang, L., Yue, F., and Wang, J.: MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31(19), 30693077 (2016).CrossRefGoogle Scholar
Dong, Z., Le, X., Liu, Y., Dong, C., and Ma, J.: Metal-organic framework derived magnetic porous carbon composite supported gold and palladium nanoparticles as highly efficient and recyclable catalysts for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. J. Mater. Chem. A 2, 1877518785 (2014).CrossRefGoogle Scholar
Wu, G., Santandreu, A., Kellogg, W., Gupta, S., Ogoke, O., Zhang, H., Wang, H.-L., and Dai, L.: Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 29, 83110 (2016).CrossRefGoogle Scholar
Shui, J., Chen, C., Grabstanowicz, L., Zhao, D., and Liu, D.-J.: Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. 112(34), 1062910634 (2015).CrossRefGoogle Scholar
Zhang, H., Osgood, H., Xie, X., Shao, Y., and Wu, G.: Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy 31, 331350 (2017).CrossRefGoogle Scholar
Ge, L., Lin, R., Zhu, Z., and Wang, H.: A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite. J. Mater. Res. 33(5), 538545 (2018).CrossRefGoogle Scholar
Chen, B., Ma, G., Zhu, Y., and Xia, Y.: Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Sci. Rep. 7, 5266 (2017).CrossRefGoogle ScholarPubMed
Bai, L., Liu, J., Gu, W., Song, Y., and Wang, F.: Carbon-based nanostructures vertically arrayed on layered lanthanum oxycarbonate as highly efficient catalysts for oxygen reduction reactions. ACS Appl. Mater. Inter. 11(18), 1645216460 (2019).CrossRefGoogle ScholarPubMed
Zhou, Y., Zhang, Y., Xu, X., Zhao, S., Guo, Z., Wu, K.-H., Tan, C., and Wang, Z.: Bimetallic metal-organic framework derived metal-carbon hybrid for efficient reversible oxygen electrocatalysis. Front. Chem. 7, 747 (2019).CrossRefGoogle ScholarPubMed
Yu Xia, B., Yan, Y., Li, N., Bin Wu, H., Lou, X.W.D., and Wang, X.: A metal-organic-framework-derived bi-functional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016).CrossRefGoogle Scholar
Li, Y., Xu, H., Huang, H., Gao, L., Zhao, Y., and Ma, T.: Synthesis of Co–B in porous carbon using a metal–organic framework (MOF) precursor: A highly efficient catalyst for the oxygen evolution reaction. Electrochem. Commun. 86, 140144 (2018).CrossRefGoogle Scholar
Meng, J., Niu, C., Xu, L., Li, J., Liu, X., Wang, X., Wu, Y., Xu, X., Chen, W., Li, Q., Zhu, Z., Zhao, D., and Mai, L.: General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139, 82128221 (2017).CrossRefGoogle ScholarPubMed
Park, H., Oh, S., Lee, S., Choi, S., and Oh, M.: Cobalt- and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Appl. Catal., B 246, 322329 (2019).CrossRefGoogle Scholar
Chen, X-L, Huang, J-W, Huang, Y-C, Du, J., Jiang, Y-F, Zhao, Y., and Zhu, H-B: Efficient Fe-Co-N-C electrocatalyst towards oxygen reduction derived from a cationic CoII-based metal–organic framework modified by anion-exchange with potassium ferricyanide. Chem.—Asian J. 14(7), 9951003 (2019).CrossRefGoogle ScholarPubMed
He, P., Wu, Y., Chen, H., Zhu, Z., Liu, H., Gao, J., and Xu, H.: Hierarchical bimetal embedded in carbon nanoflower electrocatalysts derived from metal-organic frameworks for efficient oxygen evolution reaction. J. Alloys Compd. 813, 152192 (2020).CrossRefGoogle Scholar
Kim, A., Muthuchamy, N., Yoon, C., Hoon Joo, S., and Hyun Park, K.: MOF-derived Cu@Cu2O nanocatalyst for oxygen reduction reaction and cycloaddition reaction. Nanomaterials 8(3), 138 (2018).CrossRefGoogle ScholarPubMed
Wu, Q., Liang, J., Yi, J.-D., Shi, P.-C., Huang, Y.-B., and Cao, R.: Porous nitrogen/halogen dual-doped nanocarbons derived from imidazolium functionalized cationic metal-organic frameworks for highly efficient oxygen reduction reaction. Sci. China Mater. 62(5), 671680 (2019).CrossRefGoogle Scholar
Zhao, S., Yin, H., Du, L., He, L., Zhao, K., Chang, L., Yin, G., Zhao, H., Liu, S., and Tang, Z.: Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12), 1266012668 (2014).CrossRefGoogle ScholarPubMed
Sun, T., Xu, L., Wang, D., and Li, Y.: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 12(9), 20672080 (2019).CrossRefGoogle Scholar
Cao, Y., Lu, Y., Ang, E.H., Geng, H., Cao, X., Zheng, J., and Gu, H.: MOF-derived uniform Ni nanoparticles encapsulated in carbon nanotubes grafted on rGO nanosheets as bifunctional materials for lithium-ion batteries and hydrogen evolution reaction. Nanoscale 11(32), 1511215119 (2019).CrossRefGoogle ScholarPubMed
Yuan, Q., Yu, Y., Gong, Y., and Bi, X.: Three-dimensional N-doped carbon nanotube frameworks on Ni foam derived from a metal–organic framework as a bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Inter. 12(3), 35923602 (2020).CrossRefGoogle ScholarPubMed
Song, Z., Zhang, L., Zheng, M., and Sun, X.: Chapter 1: MOF-derived materials for extremely efficient electrocatalysis. In Layered Materials for Energy Storage and Conversion, Geng, D., Cheng, Y., and Zhang, G., eds. (Royal Society of Chemistry, London, 2019); pp. 138.Google Scholar
Wang, H.-F., Chen, L., Pang, H., Kaskel, S., and Xu, Q.: MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 14141448 (2020).CrossRefGoogle ScholarPubMed
Huang, T. and Lee, J.M.: Layered hybrid structure of cobalt/N-doped carbon derived from metal-organic frameworks for electrocatalytic hydrogen evolution. In Proceeding AIChE Annual Meeting, October 29 – November 3, 2017 Minneapolis Convention Center, Minneapolis, MN, USA (2017).Google Scholar
Yu, D., Robert Ilango, P., Han, S., Ye, M., Hu, Y., Li, L., and Peng, S.: Metal-organic framework derived Co@NC/CNT hybrid as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. Int. J. Hydrog. Energy 44(60), 3205432065 (2019).CrossRefGoogle Scholar
Singh, T., Das, C., Bothra, N., Sikdar, N., Das, S., Pati, S.K., and Kumar Maji, T.: MOF derived Co3O4@Co/NCNT nanocomposite for electrochemical hydrogen evolution, flexible zinc-air batteries, and overall water splitting. Inorg. Chem. 59(5), 31603170 (2020).CrossRefGoogle ScholarPubMed
Wang, X., Huang, X., Gao, W., Tang, Y., Jiang, P., Lan, K., Yang, R., Wang, B., and Li, R.: Metal–organic framework derived CoTe2 encapsulated on nitrogen-doped carbon nanotubes frameworks: High-efficiency bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 6, 36843691 (2018).CrossRefGoogle Scholar
Weng, B., Grice, C.R., Meng, W., Guan, L., Xu, F., Yu, Y., Wang, C., Zhao, D., and Yan, Y.: Metal–organic framework-derived CoWP@C composite nanowire electrocatalyst for efficient water splitting. ACS Energy Lett. 3(6), 14341442 (2018).CrossRefGoogle Scholar
Guan, C., Wu, H., Ren, W., Yang, C., Liu, X., Ouyang, X., Song, Z., Zhang, Y., Pennycook, S.J., Cheng, C., and Wang, J.: Metal–organic framework-derived integrated nanoarrays for overall water splitting. J. Mater. Chem. A 6, 90099018 (2018).CrossRefGoogle Scholar
Kang, C., Lee, Y., Kim, I., Hyun, S., Hoon Lee, T., Yun, S., Yoon, W.-S., Moon, Y., Lee, J., Kim, S., and Lee, H.-J.: Highly efficient nanocarbon coating Layer on the nanostructured copper sulfide-metal organic framework derived carbon for advanced sodium-ion battery anode. Materials 12, 1324 (2019).CrossRefGoogle ScholarPubMed
Shi, W., Xu, X., Ye, C., Sha, D., Yin, R., Shen, X., Liu, X., Liu, W., Shen, J., Cao, X., and Gao, C.: Bimetallic metal-organic framework-derived carbon nanotube-based frameworks for enhanced capacitive deionization and Zn-air battery. Front. Chem. 7, 449 (2019).CrossRefGoogle ScholarPubMed
Quynh Ngan Tran, T., Ju Park, B., Hyun Yun, W., Nhac Duong, T., and Hee Yoon, H.: Metal–organic framework–derived Ni@C and NiO@C as anode catalysts for urea fuel cells. Sci. Rep. 10, 278 (2020).CrossRefGoogle Scholar
Chen, S., Jang, H., Wang, J., Qin, Q., Liu, X., and Cho, J.: Bimetallic metal–organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions. J. Mater. Chem. A 8, 20992104 (2020).CrossRefGoogle Scholar
Nath Bhadra, B., Vinu, A., Serre, C., and Hwa Jhung, S.: MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Mater. Today 25, 88111 (2019).CrossRefGoogle Scholar
Wang, S. and Wang, X.: Multifunctional metal-organic frameworks for photocatalysis. Small 11(26), 30973112 (2015).CrossRefGoogle ScholarPubMed
He, L., Li, L., Wang, T., Gao, H., Li, G., Wu, X., Su, Z., and Wang, C.: Fabrication of Au/ZnO nanoparticles derived from ZIF-8 with visible light photocatalytic hydrogen production and degradation dye activities. Dalton Trans. 43, 1698116985 (2014).CrossRefGoogle ScholarPubMed
Cao, X., Zheng, B., Rui, X., Shi, W., Yan, Q., and Zhang, H.: Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem., Int. Ed. 53(5), 14041409 (2014).CrossRefGoogle ScholarPubMed
Liang, P., Zhang, C., Sun, H., Liu, S., Tadé, M., and Wang, S.: Photocatalysis of C, N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Adv. 6, 9590395909 (2016).CrossRefGoogle Scholar
Zhu, G., Li, X., Wang, H., and Zhang, L.: Microwave assisted synthesis of reduced graphene oxide incorporated MOF-derived ZnO composites for photocatalytic application. Catal. Commun. 88, 58 (2017).CrossRefGoogle Scholar
Chen, H., Shen, K., Chen, J., Chen, X., and Li, Y.: Hollow-ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 5, 99379945 (2017).CrossRefGoogle Scholar
Tao, Z., Wang, T., Wang, X., Zheng, J., and Li, X.: MOF-derived noble metal free catalysts for electrochemical water splitting. ACS Appl. Mater. Inter. 8, 3539035397 (2016).CrossRefGoogle ScholarPubMed
Wang, C., Kim, J., Tang, J., Na, J., Kang, Y-M, Kim, M., Lim, H., Bando, Y., Li, J., and Yamauchi, Y.: Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angew. Chem. 132(5), 20822086 (2020).CrossRefGoogle Scholar
Chang, W., Zheng, D., Zhao, C., and Yang, Y.: Photocatalytic activity of MOF-derived Cu2O/Cu/C/Ag porous composites. S. Afr. J. Chem. 72, 1015 (2019).CrossRefGoogle Scholar
Zhao, X., Tan, Y., Wu, F., Niu, H., Tang, Z., Cai, Y., and Giesy, J.P.: Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance. Sci. Total Environ. 571, 380387 (2016).CrossRefGoogle ScholarPubMed
Li, H., Tian, J., Zhu, Z., Cui, F., Zhu, Y.-A., Duan, X., and Wang, S.: Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application. Chem. Eng. J. 354, 507516 (2018).CrossRefGoogle Scholar
Gong, Y., Zhao, X., Zhang, H., Yang, B., Xiao, K., Guo, T., Zhang, J., Shao, H., Wang, Y., and Yud, G.: MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol a degradation with peroxymonosulfate under visible light irradiation. Appl. Catal., B 233, 3545 (2018).CrossRefGoogle Scholar
Le, T.X., Cowan, M.G., Drobek, M., Bechelany, M., Julbe, A., and Cretin, M.: Fe-nanoporous carbon derived from MIL-53(Fe): A heterogeneous catalyst for mineralization of organic pollutants. Nanomaterials 9(4), 641 (2019).CrossRefGoogle ScholarPubMed
Van Tran, T., Thi Cam Nguyen, D., Le, H.T.N., Nguyen, O.T.K., Huu Nguyen, V., Thi Nguyen, T., Giang Bach, L., and Duy Nguyen, T.: A hollow mesoporous carbon from metal-organic framework for robust adsorbability of ibuprofen drug in water 6(5) (2019). doi: 10.1098/rsos.190058CrossRefGoogle Scholar
Zhao, S.-N., Wang, G., Poelman, D., and Van Der Voort, P.: Metal organic frameworks based materials for heterogeneous photocatalysis. Molecules 23(11), 2947 (2018).CrossRefGoogle ScholarPubMed
Wang, Z., Huang, J., Mao, J., Guo, Q., Chen, Z., and Lai, Y.: Metal–organic frameworks and their derivatives with graphene composites: Preparation and applications in electrocatalysis and photocatalysis. J. Mater. Chem. A 8, 29342961 (2020).CrossRefGoogle Scholar
Zhang, H., Chen, S., Zhang, H., Fan, X., Gao, C., Yu, H., and Quan, X.: Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient fenton-like catalyst for degradation of organic pollutants. Front. Environ. Sci. Eng. 13, 18 (2019).CrossRefGoogle Scholar
Song, F-Z, Yang, X., and Xu, Q.: Ultrafine bimetallic Pt–Ni nanoparticles achieved by metal–organic framework templated zirconia/porous carbon/reduced graphene oxide: Remarkable catalytic activity in dehydrogenation of hydrous hydrazine. Small Methods 4(1), 1900707 (2020).CrossRefGoogle Scholar
Zhuang, S., Babu Nunna, B., and Soo Lee, E.: Metal organic framework-modified nitrogen-doped graphene oxygen reduction reaction catalyst synthesized by nanoscale high-energy wet ball-milling structural and electrochemical characterization. MRS Commun. 8(1), 4048 (2018).CrossRefGoogle Scholar
Zhu, L., Meng, L., Shi, J., Li, J., Jinhai, J.-S., Zhang, X., and Feng, M.: Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. J. Environ. Manage. 232, 964977 (2019).CrossRefGoogle Scholar
Song, Z., Cheng, N., Lushington, A., and Sun, X.: Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 6, 116 (2016).CrossRefGoogle Scholar
Yu Xia, B., Yan, Y., Li, N., Bin Wu, H., Lou, X.W.D., and Wang, X.: A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016).CrossRefGoogle Scholar