Skip to main content
Log in

Effect of Interfaces and Thickness on the Crystallization Kinetics of Amorphous Germanium Films

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The processes of crystallization of amorphous germanium films of various thicknesses and multilayer germanium/silicon nanostructures under isothermal annealing (T = 440°C) were studied. Samples were grown on glass substrates using the method of plasma-chemical deposition. The phase composition of the structures was determined from the analysis of Raman spectra. It was found that 200 nm thick germanium film almost completely crystallizes after two hours of annealing, while crystalline nuclei with a volume fraction of less than 1% only appear in a 6 mm thick germanium film. Four-hour annealing of a thin film leads to a noticeable increase in the nuclei size and the crystallinity fraction increases to 40%. Annealing of a-Ge (6 nm) nanolayers embedded in a-Si matrix under the same conditions for 2 and 4 hours does not even lead to partial crystallization, the layers remain amorphous. The influence of interfaces on the crystallization of germanium layers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenski, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, Semiconductors 34, 1229 (2000).

    Article  ADS  Google Scholar 

  2. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, Appl. Phys. Rev. 1, 011302 (2014).

    Article  ADS  Google Scholar 

  3. Z. Liu, T. Zhou, L. Li, Y. Zuo, C. He, C. Li, C. Xue, B. Cheng, and Q. Wang, Appl. Phys. Lett. 103, 082101 (2013).

    Article  ADS  Google Scholar 

  4. N. G. Galkin, K. N. Galkin, I. M. Chernev, R. Fajgar, T. H. Stuchlikova, Z. Remes, and J. Stuchlik, Phys. Status Solidi C 10, 1712 (2013).

    Article  ADS  Google Scholar 

  5. G. K. Krivyakin, V. A. Volodin, S. A. Kochubei, G. N. Kamaev, A. Purkrt, Z. Remes, R. Fajgar, T. H. Stuchliková, and J. Stuchlik, Semiconductors 50, 935 (2016).

    Article  ADS  Google Scholar 

  6. G. K. Krivyakin, V. A. Volodin, A. A. Shklyaev, V. Mortet, J. More-Chevalier, P. Ashcheulov, Z. Remes, T. H. Stuchliková, and J. Stuchlik, Semiconductors 51, 1370 (2017).

    Article  ADS  Google Scholar 

  7. C. Li, J. Ni, X. Sun, X. Wang, Z. Li, H. Cai, J. Li, and J. Zhang, J. Phys. D: Appl. Phys. 50, 045108 (2017).

    Article  ADS  Google Scholar 

  8. V. A. Volodin, G. K. Krivyakin, G. D. Ivlev, S. L. Prokopyev, S. V. Gusakova, and A. A. Popov, Semiconductors 53, 400 (2019).

    Article  ADS  Google Scholar 

  9. M. Wihl, M. Cardona, and J. Tauc, J. Non-Cryst. Solids 8–10, 172 (1972).

  10. K. W. Jobson, J.-P. R. Wells, R. E. I. Schropp, D. A. Carder, P. J. Phillips, and J. I. Dijkhuis, Phys. Rev. B 73, 155202 (2006).

    Article  ADS  Google Scholar 

  11. V. A. Volodin and D. I. Koshelev, J. Raman Spectrosc. 44, 1760 (2013).

    Article  ADS  Google Scholar 

  12. Y. Maeda, Phys. Rev. B 59, 1658 (1995).

    Article  ADS  Google Scholar 

  13. V. A. Volodin, D. V. Marin, V. A. Sachkov, E. B. Gorokhov, H. Rinnert, and M. Vergnat, J. Exp. Theor. Phys. 118, 65 (2014).

    Article  ADS  Google Scholar 

  14. J. H. Parker, Jr., D. W. Feldman, and M. Ashkin, Phys. Rev. 155, 712 (1967).

    Article  ADS  Google Scholar 

  15. D. M. Zhigunov, G. N. Kamaev, P. K. Kashkarov, and V. A. Volodin, Appl. Phys. Lett. 113, 023101 (2018).

    Article  ADS  Google Scholar 

  16. M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, Appl. Phys. Lett. 74, 2614 (1999).

    Article  ADS  Google Scholar 

  17. M. Zacharias, J. Bläsing, K. Hirschman, L. Tsybeskov, and P. M. Fauchet, J. Non-Cryst. Solids 266–269, 640 (2000).

  18. M. Zacharias and P. Streitenberger, Phys. Rev. B 62, 8391 (2000).

    Article  ADS  Google Scholar 

  19. P. Germain, K. Zeliama, S. Squelard, J. C. Bourgoin, and A. Gheorghiu, J. Appl. Phys. 50, 6986 (1979).

    Article  ADS  Google Scholar 

  20. C. Spinella, S. Lombardo, and F. Priolo, J. Appl. Phys. 84, 5383 (1998).

    Article  ADS  Google Scholar 

  21. Zhang Fan, S. A. Kochubei, M. Stoffel, H. Rinnert, M. Vergnat, and V. A. Volodin, Semiconductors 54 (3), 322 (2020).

Download references

ACKNOWLEDGMENTS

We thank the CCU “VTAN” NSU for the equipment provided for detecting the Raman spectra.

Funding

This work was carried out according to the state assignment of the Ministry of Education and Science of the Russian Federation: in terms of crystallization and investigation of Raman spectra—the Basic Research Program, Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, no. 0306-2019-0019; in terms of growth of structures—the Basic Research Program, Ioffe Physical–Technical Institute, the Russian Academy of Sciences, no. 0066-2019-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Volodin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivyakin, G.K., Volodin, V.A., Kamaev, G.N. et al. Effect of Interfaces and Thickness on the Crystallization Kinetics of Amorphous Germanium Films. Semiconductors 54, 754–758 (2020). https://doi.org/10.1134/S1063782620070040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620070040

Keywords:

Navigation