Skip to main content
Log in

Influence of the Growth Conditions and Doping Level on the Luminescence Kinetics of Ge:Sb Layers Grown on Silicon

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The emission properties of Ge layers grown on Si(001) substrates and doped with Sb to different levels are studied by means of steady-state and time-resolved photoluminescence spectroscopy. It is shown that the peak of the steady-state photoluminescence intensity of n-Ge/Si layers at room temperature is observed at an Sb concentration close to the level of the equilibrium solubility of Sb in Ge (~1019 cm–3), which is in agreement with previously obtained results. Studies of the kinetics of photoluminescence associated with direct radiative transitions in Ge show that an effect on the kinetics is produced not only by the concentration of introduced donors, but also the conditions of formation, among them the deposition temperature of n-Ge layers. It is found that an increase in the Sb concentration results in a decrease in the charge-carrier lifetime. It is established that the low growth temperatures required to attain high doping levels in Ge layers also yield a substantial decrease in the charge-carrier lifetime compared to that in Ge layers produced at high temperatures. The conditions of short-term thermal annealing of the structures are determined, wherein the above-mentioned negative effects can be compensated, i.e., the photoluminescence intensity can be enhanced and the charge-carrier lifetime can be extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Geiger, T. Zabel, and H. Sigg, Front. Mater. 2, 52 (2015).

    Article  ADS  Google Scholar 

  2. S. Saito, A. Z. Al-Attili, K. Oda, and Y. Ishikawa, Semicond. Sci. Technol. 31, 043002 (2016).

    Article  ADS  Google Scholar 

  3. F. T. Armand Pilon, A. Lyasota, Y.-M. Niquet, V. Reboud, V. Calvo, N. Pauc, J. Widiez, C. Bonzon, J. M. Hartmann, A. Chelnokov, J. Faist, and H. Sigg, Nat. Commun. 10, 2724 (2019).

    Article  ADS  Google Scholar 

  4. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, Opt. Lett. 35, 679 (2010).

    Article  ADS  Google Scholar 

  5. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, Opt. Express 20, 11316 (2012).

    Article  ADS  Google Scholar 

  6. L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, Phys. Rev. Lett. 109, 057402 (2012).

    Article  ADS  Google Scholar 

  7. R. Geiger, J. Frigerio, M. J. Süess, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, Appl. Phys. Lett. 104, 062106 (2014).

    Article  ADS  Google Scholar 

  8. M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, J. Appl. Phys. 121, 245701 (2017).

    Article  ADS  Google Scholar 

  9. S. A. Srinivasan, C. Porret, M. Pantouvaki, Y. Shimura, P. Geiregat, R. Loo, J. van Campenhout, and D. van Thourhout, Appl. Phys. Lett. 113, 161101 (2018).

    Article  ADS  Google Scholar 

  10. D. Nam, J.-H. Kang, M. L. Brongersma, and K. C. Saraswat, Opt. Lett. 39, 6205 (2014).

    Article  ADS  Google Scholar 

  11. J. Allerbeck, A. J. Herbst, Y. Yamamoto, G. Capellini, M. Virgilio, and D. Brida, Appl. Phys. Lett. 114, 241104 (2019).

    Article  ADS  Google Scholar 

  12. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).

    Article  ADS  Google Scholar 

  13. D. S. Sukhdeo, S. Gupta, K. C. Saraswat, B. Dutt, and D. Nam, Opt. Commun. 364, 233 (2016).

    Article  ADS  Google Scholar 

  14. D. V. Yurasov, A. V. Antonov, M. N. Drozdov, V. B. Schmagin, K. E. Spirin, and A. V. Novikov, J. Appl. Phys. 118, 145701 (2015).

    Article  ADS  Google Scholar 

  15. J. Vanhellemont and E. Simoen, Mater. Sci. Semicond. Proc. 15, 642 (2012).

    Article  Google Scholar 

  16. D. V. Yurasov, A. I. Bobrov, V. M. Danil’tsev,  A. V. Novikov, D. A. Pavlov, E. V. Skorokhodov, M. V. Shaleev, and P. A. Yunin, Semiconductors 49, 1415 (2015).

    Article  ADS  Google Scholar 

  17. D. V. Yurasov, A. V. Antonov, M. N. Drozdov, P. A. Yunin, B. A. Andreev, P. A. Bushuykin, N. A. Baydakova, and A. V. Novikov, J. Cryst. Growth 491, 26 (2018).

    Article  ADS  Google Scholar 

  18. D. V. Yurasov, A. V. Novikov, N. A. Baidakova, E. E. Morozova, P. A. Yunin, D. V. Shengurov, A. V. Antonov, M. N. Drozdov, and Z. F. Krasilnik, Semicond. Sci. Technol. 33, 124019 (2018).

    Article  ADS  Google Scholar 

  19. B. Schwartz, A. Klossek, M. Kittler, M. Oehme, E. Kasper, and J. Schulze, Phys. Status Solidi C, 1686 (2014).

  20. S. C. Jain and D. J. Roulston, Solid-State Electron. 34, 453 (1991).

    Article  ADS  Google Scholar 

  21. Ch. Xu, J. Kouvetakis, and J. Menéndez, J. Appl. Phys. 125, 085704 (2019).

    Article  ADS  Google Scholar 

  22. M. Virgilio, T. Schroeder, Y. Yamamoto, and G. Capellini, J. Appl. Phys. 118, 233110 (2015).

    Article  ADS  Google Scholar 

  23. S. Brotzmann, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E. Simoen, E. E. Haller, J. S. Christensen, and P. Werner, Phys. Rev. B 77, 235207 (2008).

    Article  ADS  Google Scholar 

  24. A. Chroneos and H. Bracht, Appl. Phys. Rev. 1, 011301 (2014).

    Article  ADS  Google Scholar 

  25. D. V. Yurasov, N. A. Baidakova, M. N. Drozdov, E. E. Morozova, M. A. Kalinnikov, and A. V. Novikov, Semiconductors 53, 882 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using equipment of the Multiple-Access Center, Institute for Physics of Microstructures, Russian Academy of Sciences.

Funding

The study was supported by the Russian Science Foundation, project no. 19-72-10011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Yurasov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurasov, D.V., Baídakova, N.A., Yablonskiy, A.N. et al. Influence of the Growth Conditions and Doping Level on the Luminescence Kinetics of Ge:Sb Layers Grown on Silicon. Semiconductors 54, 811–816 (2020). https://doi.org/10.1134/S1063782620070131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620070131

Keywords:

Navigation