Skip to main content
Log in

First-Principle Investigation of the (001) Surface Reconstructions of GaSb and InSb Semiconductors

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The atomic and electronic structures of reconstructions with the symmetry (2 × 4), (4 × 2), c(4 × 4), and (4 × 3) on the (001) surface of GaSb and InSb semiconductors are investigated by the projector augmented-wave method. It is shown that the reconstruction β2(2 × 4) is stable on the GaSb(001) surface in the cation-rich limit, while the α2(2 × 4) reconstruction has the lowest energy in the case of InSb. The reconstruction c(4 × 4) with three antimony dimers is found to be stable in the Sb-rich limit. The structures α(4 × 3) and β(4 × 3) are stable near the stoichiometric composition on the GaSb(001) surface, which agrees with the experimental data. The electronic structure of (4 × 3) reconstructions with the lowest surface energy is discussed. In case of (4 × 3) structures the weak influence of the chemical composition of cations on the structure and localization of surface states is revealed. A correlation between the surface energy of certain reconstructions (4 × 2) and (2 × 4) and a difference in the atomic radii of cations and anions is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. Mönch, Semiconductor Surfaces and Interfaces (Springer, Berlin, 2001).

    MATH  Google Scholar 

  2. R. Magri and A. Zunger, Phys. Rev. B 64, 081305 (2001).

    ADS  Google Scholar 

  3. R. Magri and A. Zunger, Phys. Rev. B 65, 165302 (2001).

    ADS  Google Scholar 

  4. M. J. Yang, W. J. Moore, B. R. Bennett, and B. V. Shanabrook, Electron. Lett. 34, 270 (1998).

    ADS  Google Scholar 

  5. G. Klimeck, R. Lake, and D. K. Blanks, Phys. Rev. B 58, 7279 (1998).

    ADS  Google Scholar 

  6. D. Z.-Y. Ting and T. C. McGill, J. Vac. Sci. Technol. B 14, 2790 (1996).

    Google Scholar 

  7. Z. Zhang and M. G. Lagally, Science (Washington, DC, U. S.) 276, 377 (1997).

    Google Scholar 

  8. L. Däweritz and R. Hey, Surf. Sci. 236, 15 (1990).

    ADS  Google Scholar 

  9. Q.-K. Xue, T. Hashizume, and T. Sakurai, Prog. Surf. Sci. 56, 1 (1997).

    ADS  Google Scholar 

  10. M. Kuball, D. T. Wang, N. Esser, M. Cardona, and J. Zegenhagen, Phys. Rev. B 51, 13880 (1995).

    ADS  Google Scholar 

  11. W. G. Schmidt, Appl. Phys. A 75, 89 (2002).

    ADS  Google Scholar 

  12. W. G. Schmidt and F. Bechstedt, Phys. Rev. B 54, 16742 (1996).

    ADS  Google Scholar 

  13. W. G. Schmidt, Appl. Phys. A 65, 581 (1997).

    ADS  Google Scholar 

  14. S.-H. Lee, W. Moritz, and M. Scheffler, Phys. Rev. Lett. 85, 3890 (2000).

    ADS  Google Scholar 

  15. R. H. Miwa, R. Miotto, A. C. Ferraz, and G. P. Srivastava, Phys. Rev. B 67, 045325 (2003).

    ADS  Google Scholar 

  16. A. V. Bakulin, S. E. Kulkova, S. V. Eremeev, and O. E. Tereshchenko, Surf. Sci. 615, 97 (2013).

    ADS  Google Scholar 

  17. A. Bakulin, A. Ponomarev, and S. Kulkova, IOP Conf. Ser.: Mater. Sci. Eng. 77, 012004 (2015).

  18. G. E. Franklin, D. H. Rich, A. Samsavar, E. S. Hirschorn, F. M. Leibsle, T. Miller, and T. C. Chiang, Phys. Rev. B 41, 12619 (1990).

    ADS  Google Scholar 

  19. M. T. Sieger, T. Miller, and T. C. Chiang, Phys. Rev. B 52, 8256 (1995).

    ADS  Google Scholar 

  20. W. Barvosa-Carter, A. S. Bracker, J. C. Culbertson, B. Z. Nosho, B. V. Shanabrook, L. J. Whitman, H. Kim, N. A. Modine, and E. Kaxiras, Phys. Rev. Lett. 84, 4649 (2000).

    ADS  Google Scholar 

  21. M. C. Righi, R. Magri, and C. M. Bertoni, Phys. Rev. B 71, 075323 (2005).

    ADS  Google Scholar 

  22. J. Houze, S. Kim, S.-G. Kim, S. C. Erwin, and L. J. Whitman, Phys. Rev. B 76, 205303 (2007).

    ADS  Google Scholar 

  23. D. Toton, J. He, G. Gory, J. J. Kolodziej, S. Godlewski, L. Kantorovich, and M. Szymonsk, J. Phys.: Condens. Matter 22, 265001 (2010).

    ADS  Google Scholar 

  24. C. Kumpf, L. D. Marks, D. Ellis, D. Smilgies, E. Landemark, M. Nielsen, R. Feidenhans’l, J. Zegenhagen, O. Bunk, J. H. Zeysing, Y. Su, and R. L. Johnson, Phys. Rev. Lett. 86, 3586 (2001).

    ADS  Google Scholar 

  25. C. Kumpf, D. Smilgies, E. Landemark, M. Nielsen, R. Feidenhans’l, O. Bunk, J. H. Zeysing, Y. Su, R. L. Johnson, L. Cao, J. Zegenhagen, B. O. Fimland, L. D. Marks, and D. Ellis, Phys. Rev. B 64, 075307 (2001).

    ADS  Google Scholar 

  26. J. J. Kolodziej, B. Such, M. Goryl, F. Krok, P. Piatkowski, and M. Szymonski, Appl. Surf. Sci. 252, 7614 (2006).

    ADS  Google Scholar 

  27. G. Goryl, O. Boelling, S. Godlewski, J. J. Kolodziej, B. Such, and M. Szymonski, Surf. Sci. 601, 3605 (2007).

    ADS  Google Scholar 

  28. C. Kendrick, G. LeLay, and A. Kahn, Phys. Rev. B 54, 17877 (1996).

    ADS  Google Scholar 

  29. D. L. Feldwinn, J. B. Clemens, J. Shen, S. R. Bishop, T. J. Grassman, A. C. Kummel, R. Droopad, and M. Passlack, Surf. Sci. 603, 3321 (2009).

    ADS  Google Scholar 

  30. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    ADS  Google Scholar 

  31. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    ADS  Google Scholar 

  32. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    ADS  Google Scholar 

  33. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

  35. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    ADS  Google Scholar 

  36. K. Shiraishi and T. Ito, Jpn. J. Appl. Phys. 37, L1211 (1998).

    ADS  Google Scholar 

  37. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    ADS  MathSciNet  Google Scholar 

  38. K. H. Xue, J. H. Yuan, L. R. C. Fonseca, and X. S. Miao, Comput. Mater. Sci. 153, 493 (2018).

    Google Scholar 

  39. L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78, 125116 (2008).

    ADS  Google Scholar 

  40. L. G. Ferreira, M. Marques, and L. K. Teles, AIP Adv. 1, 032119 (2011).

    ADS  Google Scholar 

  41. R. R. Pela, M. Marques, and L. K. Teles, J. Phys.: Condens. Matter 27, 505502 (2015).

    Google Scholar 

  42. A. V. Bakulin and S. E. Kulkova, Russ. Phys. J. 57, 996 (2014).

    Google Scholar 

  43. L. J. Whitman, P. M. Thibado, S. C. Erwin, B. R. Bennett, and B. V. Shanabrook, Phys. Rev. Lett. 79, 693 (1997).

    ADS  Google Scholar 

  44. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, USA, 2005), p. 50.

    MATH  Google Scholar 

  45. B. Paulus, P. Fulde, and H. Stoll, Phys. Rev. B 54, 2556 (1996).

    ADS  Google Scholar 

  46. G. S. Rohrer, Structure and Bonding in Crystalline Materials (Cambridge Univ. Press, Cambridge, UK, 2001).

    Google Scholar 

  47. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    ADS  Google Scholar 

  48. N. A. Gokcen, Bull. Alloys Phase Diagrams 10, 11 (1989).

    Google Scholar 

  49. M. Yoshikawa, A. Nakamura, T. Nomura, and K. Ishikawa, Jpn. J. Appl. Phys. 35, 1205 (1996).

    ADS  Google Scholar 

  50. K. B. Ozanyan, P. J. Parbrook, M. Hopkinson, C. R. Whitehouse, Z. Sobiesierski, and D. I. Westwood, J. Appl. Phys. 82, 474 (1997).

    ADS  Google Scholar 

  51. V. P. LaBella, Z. Ding, D. W. Bullock, C. Emery, and P. M. Thibado, J. Vac. Sci. Technol. A 18, 1492 (2000).

    ADS  Google Scholar 

  52. T. Hashizume, Q. K. Xue, J. Zhou, A. Ichimiya, and T. Sakurai, Phys. Rev. Lett. 73, 2208 (1994).

    ADS  Google Scholar 

  53. Q. K. Xue, T. Hashizume, A. Ichimiya, T. Ohno, Y. Hasegawa, and T. Sakurai, Sci. Rep. RITU A 44, 113 (1997).

    Google Scholar 

Download references

Funding

This  work  is performed according to the Government research assignment for ISPMS SB RAS, project no. III.23.2.8, and the Competitiveness Improvement Program of Tomsk State University. Numerical calculations are carried out using the SKIF-Siberia supercomputer at the Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bakulin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, A.V., Kulkova, S.E. First-Principle Investigation of the (001) Surface Reconstructions of GaSb and InSb Semiconductors. Semiconductors 54, 742–753 (2020). https://doi.org/10.1134/S1063782620070027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620070027

Keywords:

Navigation