Skip to main content
Log in

Investigation of Pd|HfO2|AlGaN|GaN Enhancement-Mode High Electron Mobility Transistor with Sensitization, Activation, and Electroless-Plating Approaches

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A new Pd|HfO2|AlGaN|GaN metal-oxide-semiconductor (MOS) enhancement-mode high electron mobility transistor (HEMT) is fabricated with low-temperature sensitization, activation, electroless-plating, and two-step gate-recess approaches. Experimentally, a high positive threshold voltage Vth of 1.96 V, a very low gate leakage IG of 6.3 × 10–8 mA/mm, a high maximum extrinsic transconductance gm, max of 75.3 mS/mm, a high maximum drain saturation current ID, max of 266.9 mA/mm, and a high ON/OFF current ratio of 7.6 × 107 are obtained at 300 K. Moreover, the related temperature-dependent characteristics, over temperature ranges from 300 to 500 K, are comprehensively studied. The very low temperature coefficients on gate current, drain saturation current, transconductance, and threshold voltage confirm the thermal-stable capability of the studied device. Therefore, based on these advantages, the studied Pd|HfO2|AlGaN|GaN MOS structure is suitable for the development of high-performance HEMTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. T. R. Lenka and A. K. Panda, Semiconductors 45, 650 (2011).

    Article  ADS  Google Scholar 

  2. L. Y. Su, F. Lee, and J. J. Huang, IEEE Trans. Electron Dev. 61, 460 (2014).

    Article  ADS  Google Scholar 

  3. M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron Dev. 60, 3053 (2013).

    Article  ADS  Google Scholar 

  4. Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, IEEE Electron Dev. Lett. 26, 435 (2005).

    Article  ADS  Google Scholar 

  5. L. Yuan, H. Chen, and K. J. Chen, IEEE Electron Dev. Lett. 32, 303 (2011).

    Article  ADS  Google Scholar 

  6. T. H. Hung, P. S. Park, S. Krishnamoorthy, D. N. Nath, and S. Rajan, IEEE Electron Dev. Lett. 35, 312 (2014).

    Article  ADS  Google Scholar 

  7. Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, IEEE Electron Dev. Lett. 34, 1373 (2013).

    Article  ADS  Google Scholar 

  8. S. Ahn, B. J. Kim, Y. H. Lin, F. Ren, S. J. Pearton, G. Yang, J. Kim, and I. I. Kravchenko, J. Vac. Sci. Technol. B 34, 051202 (2016).

    Article  Google Scholar 

  9. Q. Zhou, L. Liu, A. Zhang, B. Chen, Y. Jin, Y. Shi, Z. Wang, W. Chen, and B. Zhang, IEEE Electron Dev. Lett. 37, 165 (2016).

    Article  ADS  Google Scholar 

  10. S. J. Huang, C. W. Chou, Y. K. Su, J. H. Lin, H. C. Yu, D. L. Chen, and J. L. Ruan, Appl. Surf. Sci. 401, 373 (2017).

    Article  ADS  Google Scholar 

  11. R. Wang, Y. Cai, C. W. Tang, K. M. Lau, and K. J. Chen, IEEE Electron Dev. Lett. 27, 793 (2006).

    Article  ADS  Google Scholar 

  12. S. Sugiura, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, Phys. Status Solidi C 5, 1923 (2008).

    Article  ADS  Google Scholar 

  13. Q. Liu and S. Lau, Solid State Electron. 42, 677 (1998).

    Article  ADS  Google Scholar 

  14. C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, J. Electrochem. Soc. 159, D637 (2012).

    Article  Google Scholar 

  15. C. C. Chen, H. I. Chen, I. P. Liu, P. C. Chou, J. K. Liou, C. C. Huang, and W. C. Liu, Sens. Actuators, B 212, 127 (2015).

    Article  Google Scholar 

  16. B. E. Conway, R. E. White, and J. O. M. Bockris, Modern Aspects of Electrochemistry (Kluwer Academic, New York, 2002).

    Book  Google Scholar 

  17. C. W. Chen, P. H. Lai, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, Semicond. Sci. Technol. 21, 1358 (2006).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the Ministry of Science and Technology of the Republic of China under Contract nos. MOST 108-2221-E-017-006 and MOST 108-2221-E-006-045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-H. Tsai.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Niu, JS., Liu, WC. et al. Investigation of Pd|HfO2|AlGaN|GaN Enhancement-Mode High Electron Mobility Transistor with Sensitization, Activation, and Electroless-Plating Approaches. Semiconductors 54, 803–810 (2020). https://doi.org/10.1134/S1063782620070076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620070076

Keywords:

Navigation