Skip to main content
Log in

Doping-Dependent Nonlinear Electron Mobility in GaAs|InxGa1 –xAs Coupled Quantum-Well Pseudo-Morphic MODFET Structure

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We analyze the asymmetric delta-doping dependence of nonlinear electron mobility μ of GaAs|InxGa1 –xAs double quantum-well pseudo-morphic modulation doped field-effect transistor structure. We solve the Schrodinger and Poisson’s equations self-consistently to obtain the sub-band energy levels and wave functions. We consider scatterings due to the ionized impurities (IMP), alloy disorder (AL), and interface roughness (IR) to calculate μ for a system having double sub-band occupancy, in which the inter-sub-band effects play an important role. Considering the doping concentrations in the barriers towards the substrate and surface sides as Nd1 and Nd2, respectively, we show that variation of Nd1 leads to a dip in μ near Nd1 = Nd2, at which the resonance of the sub-band states occurs. A similar dip in μ as a function of Nd1 is also obtained at Nd1 = Nd2 by keeping (Nd1 + Nd2) unchanged. By increasing the central barrier width and well width, the dip in μ becomes sharp. We note that even though the overall μ is governed by the IMP- and AL-scatterings, the dip in μ is mostly affected through substantial variation of the sub-band mobilities due to IR-scattering near the resonance. Our results of nonlinear electron mobility near the resonance of sub-band states can be utilized for the performance analysis of GaAs|InGaAs pseudo-morphic quantum-well field-effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pseudomorphic HEMT Technology and Applications, Ed. by R. L. Ross, S. P. Svensson, and P. Lugli (Springer, Dordrecht, 1996).

    Google Scholar 

  2. T. Ohshima, R. Shigemasa, M. Sato, M. Tsunotani, and T. Kimura, Solid State Electron. 43, 1519 (1999).

    Article  ADS  Google Scholar 

  3. S. J. Mahon, A. Dadello, A. P. Fattorini, A. Bessemoulin, and J. T. Harvey, in Proceedings of the IEEE MTT-S International Microwave Sympoisum (2008), p. 855.

  4. S.-J. Cho, C. Wang, and N.-Y. Kim, Microelectron. Eng. 113, 11 (2014).

    Article  Google Scholar 

  5. V. M. Lukashin, A. B. Pashkovskii, K. S. Zhuravlev, A. I. Toropov, V. G. Lapin, E. I. Golant, and A. A. Kapralova, Semiconductors 48, 666 (2014).

    Article  ADS  Google Scholar 

  6. Z. Wang, J. Mou, W. Yu, and X. Lv, Appl. Mech. Mater. 229–231, 2007 (2012).

  7. K. Kalna and A. Asenov, Solid State Electron. 48, 1223 (2004).

    Article  ADS  Google Scholar 

  8. K.-W. Lin, K.-H. Yu, W.-L. Chang, C.-C. Cheng, K.-P. Lin, C.-H. Yen, W.-S. Lour, and W.-C. Liu, Solid State Electron. 45, 309 (2001).

    Article  ADS  Google Scholar 

  9. G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, IEEE Electron Dev. Lett. 29, 1094 (2008).

    Article  ADS  Google Scholar 

  10. D.-H. Kim, J. A. del Alamo, J.-H. Lee, and K.-S. Seo, IEEE Trans. Electron Dev. 54, 2606 (2007).

    Article  ADS  Google Scholar 

  11. J. Lin, T.-W. Kim, and D. A. Antoniadis, and J. A. del Alamo, Appl. Phys. Express 5, 064002 (2012).

    Article  ADS  Google Scholar 

  12. D.-H. Kim, J. A. del Alamo, D. A. Antoniadis, and B. Brar, in IEDM Tech.Digest (2009), p. 861.

    Google Scholar 

  13. D.-H. Kim, and B. Brar, and J. A. del Alamo, in IEDM Tech.Digest (2011), p. 319.

    Google Scholar 

  14. C.-Y. Lee, H.-P. Shiao, K.-C. Kuo, H.-Y. Wu, and W.-H. Lin, J. Vac. Sci. Technol. B 24, 2597 (2006).

    Article  Google Scholar 

  15. K. Y. Chu, S. Y. Cheng, M. H. Chiang, Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, W. C. Liu, W. Y. Cheng, and B. C. Lin, Solid State Electron. 72, 22 (2012).

    Article  ADS  Google Scholar 

  16. D. Y. Protasov and K. S. Zhuravlev, Solid State Electron. 129, 66 (2017).

    Article  ADS  Google Scholar 

  17. H.-M. Shieh, W.-C. Hsu, R.-T. Hsu, C.-L. Wu, and T.-S. Wu, IEEE Electron Dev. Lett. 14, 581 (1993).

    Article  ADS  Google Scholar 

  18. L.-Y. Chen,  S.-Y. Cheng, T.-P. Chen, K.-Y. Chu, T.-H. Tsai, Y.-C. Liu, X.-D. Liao, and W.-C. Liu, IEEE Trans. Electron Dev. 55, 3310 (2008).

    Article  ADS  Google Scholar 

  19. R. Ferreira and G. Bastard, Rep. Prog. Phys. 60, 345 (1997).

    Article  ADS  Google Scholar 

  20. P. Bhattacharya, Properties of III–V Quantum Wells and Superlattices (INSPEC, IEE, London, 1996).

  21. L. Kowalczyk, G. Karczewski, T. Wojtowicz, and J. Kossut, J. Cryst. Growth 159, 680 (1996).

    Article  ADS  Google Scholar 

  22. P. G. Huggard, C. J. Shaw, S. R. Andrews, J. A. Cluff, and R. Grey, Phys. Rev. Lett. 84, 1023 (2000).

    Article  ADS  Google Scholar 

  23. S. S. Mukherjee and S. S. Islam, Superlatt. Microstruct. 41, 56 (2007).

    Article  ADS  Google Scholar 

  24. J. Z. Zhang and D. Alisopp, Phys. Rev. B 80, 245320 (2009).

    Article  ADS  Google Scholar 

  25. S.-I. Gozu and T. Mozume, J. Cryst. Growth 425, 102 (2015).

    Article  ADS  Google Scholar 

  26. P. Silotia, K. Batra, and V. Prasad, Opt. Eng. 53, 027105 (2014).

    Article  ADS  Google Scholar 

  27. T. Wecker, F. Horich, M. Feneberg, R. Goldhahn, D. Reuter, and D. J. As, Phys. Status Solidi B 252, 873 (2015).

    Article  ADS  Google Scholar 

  28. D. K. Kim and D. S. Citrin, IEEE J. Quantum Electron. 43, 765 (2007).

    Article  ADS  Google Scholar 

  29. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  30. R. Fletcher, E. Zaremba, M. D’Iorio, C. T. Foxon, and J. J. Harris, Phys. Rev. B 41, 10649 (1990).

    Article  ADS  Google Scholar 

  31. K. Inoue and T. Matsuno, Phys. Rev. B 47, 3771 (1993).

    Article  ADS  Google Scholar 

  32. T. Sahu and K. A. Shore, Semicond. Sci. Technol. 24, 095021 (2009).

    Article  ADS  Google Scholar 

  33. S. K. Lyo, J. Phys.: Condens. Matter 13, 1259 (2001).

    ADS  Google Scholar 

  34. S. C. Jain, M. Wilander, and H. Maes, Semicond. Sci. Technol. 11, 641 (1996).

    Article  ADS  Google Scholar 

  35. M. Jaffe and J. Singh, J. Appl. Phys. 65, 329 (1989).

    Article  ADS  Google Scholar 

  36. M. Mohapatra, A. Sahu, S. R. Panda, S. Das, T. Sahu, and A. K. Panda, Jpn. J. Appl. Phys. 56, 064101 (2017).

    Article  ADS  Google Scholar 

  37. A. Palevski, F. Beltram, F. Capasso, L. Pfeiffer, and K. W. West, Phys. Rev. Lett. 65, 1929 (1990).

    Article  ADS  Google Scholar 

  38. A. Kurobe, I. M. Castleton, E. H. Linfield, M. P. Grimshaw, K. M. Brown, D. A. Ritchie, M. Pepper, and G. A. C. Jones, Phys. Rev. B 50, 8024 (1994).

    Article  ADS  Google Scholar 

  39. I. H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, J. Appl. Phys. 68, 4071 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sahu.

Ethics declarations

The authors declare that there is no conflict of interest in the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S.R., Sahu, A., Das, S. et al. Doping-Dependent Nonlinear Electron Mobility in GaAs|InxGa1 –xAs Coupled Quantum-Well Pseudo-Morphic MODFET Structure. Semiconductors 54, 788–795 (2020). https://doi.org/10.1134/S1063782620070118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620070118

Keywords:

Navigation