Skip to main content
Log in

Effect of Calcination Temperature on the Efficiency of Ni/Al2O3 in the Hydrodechlorination Reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The precursors of Ni/Al2O3 catalysts with different metal contents (2–10 wt % Ni) and calcination temperatures were obtained by wet impregnation. Their composition and physicochemical properties were determined by low-temperature nitrogen adsorption, atomic absorption spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR) with hydrogen. The formation of free and chemically bound forms of nickel was studied by TPR-H2. Calcination above 400°C leads to complete binding of nickel with Al2O3, forming nickel–aluminum spinel. According to TPR-H2, free NiO appears in the samples calcinated at 550°C only at 10% Ni. The stability of the reduced catalysts to oxidation in air and the effect of the temperature of treatment with hydrogen on the reduction of the nickel forms bonded with the support were determined. The XPS and TPR studies showed that the oxidation of reduced nickel in air led to a transition from Ni2+ forms tightly bound with support to weakly bound forms that are more easily reduced. The catalytic action in hydrodechlorination of chlorobenzene (CB HDC) of the samples that differed in the ratio of weakly and tightly bound Ni forms was considered. The spinel forms that are nearly inactive in chlorobenzene hydrodechlorination can be reduced with hydrogen to form more active Ni0 sites under the reaction conditions. The active sites obtained by the reduction of Ni2+ forms weakly bound to the support are stable under chlorobenzene hydrodechlorination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Sprung, C., Arstad, B., and Olsbye, U., Top. Catal., 2011, vol. 54, p. 1063.

    CAS  Google Scholar 

  2. Zhou, L., Guo, Y., Zhang, Q., Yagi, M., Hatakeyama, J., Li, H., Chen, J., Sakurai, M., and Kameyama, H., Appl. Catal., A., 2008, vol. 347, p. 200.

  3. Buitrago-Sierra, R., Ruiz-Martínez, J., Serrano-Ruiz, J.C., Rodríguez-Reinoso, F., and Sepúlveda-Escribano, A., J. Colloid Interface Sci., 2012, vol. 83, p. 48.

    Google Scholar 

  4. Kirumakki, S., Shpeizer, B., Sagar, G., Chary, K., and Clearfield, A., J. Catal. 2006, vol. 42, p. 19.

    Google Scholar 

  5. Pina, G., Louis, C., and Keane, M.A., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 1924.

    CAS  Google Scholar 

  6. Estellé, J., Ruz, J., Cesteros, Y., Fernández, R., Salagre, P., Medina, F., and Sueiras, J.-E., J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 2811.

    Google Scholar 

  7. Feng, J.-T., Lin, Y.-J., Evans, D.G., Duan, X., and Li, D.-Q., J. Catal., 2009, vol. 266, p. 351.

    CAS  Google Scholar 

  8. Shin, E.-J., Spiller, A., Tavoularis, G., and Keane, M.A., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 3173.

    CAS  Google Scholar 

  9. Yakovlev, V.A., Simagina, V.I., Trukhan, S.N., and Likholobov, V.A., Kinet. Catal., 2000, vol. 41, no.1, p. 25.

    CAS  Google Scholar 

  10. Kim, P., Kim, H., Joo, J.B., Kim, W., Song, I.K., and Yi, J., J. Mol. Catal. A: Chem., 2006, vol. 256, p. 178.

    CAS  Google Scholar 

  11. Cesteros, Y., Salagre, P., Medina, F., and Sueiras, J.E., Appl. Catal., B, 1999, vol. 22, p. 135.

    CAS  Google Scholar 

  12. Cuenya, B.R., Thin Solid Films, 2010, vol. 518, p. 3127.

    CAS  Google Scholar 

  13. Jolivet, J.-P., Cassaignon, S., Chanéac, C., Chiche, D., Durupthy, O., and Portehault, D., C. R. Chim., 2010, vol. 13, p. 40.

    CAS  Google Scholar 

  14. Jongnam, P., Jin, J., Gu, K.S., Youngjin, J., and Taeghwan, H., Angew. Chem., Int. Ed. 2007, vol. 46, p. 4630.

    Google Scholar 

  15. Yang, R., Li, X., Wu, J., Zhang, X., Zhang, Z., Cheng, Y., and Guo, J., Appl. Catal., A. 2009, vol. 368, p. 105.

  16. Zhang, J., Xu, H., Jin, X., Ge, Q., and Li, W., Appl. Catal., A, 2005, vol. 290, p. 87.

  17. Boukha, Z., Jiménez-González, C., de Rivas, B., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., and López-Fonseca, R., Appl. Catal., B, 2014, vols. 158 159, p. 190.

    Google Scholar 

  18. Amorim, C., Wang, X., and Keane, M.A., Chin. J Catal., 2011, vol. 32, p. 746.

    CAS  Google Scholar 

  19. Amorim, C. and Keane, M.A., J. Hazard. Mater., 2012, vols. 211–212, p. 208.

    PubMed  Google Scholar 

  20. Díaz, E., Faba, L., and Ordóñez, S., Appl. Catal., B, 2011, vol. 104, p. 415.

    Google Scholar 

  21. Liu, X., Chen, J., and Zhang, J., Ind. Eng. Chem. Res., 2008, vol. 47, p. 5362.

    CAS  Google Scholar 

  22. Bae, J.W., Kim, I.G., Lee, J.S., Lee, K.H., and Jang, E.J., Appl. Catal., A, 2003, vol. 240, p. 129.

  23. Keane, M.A., Park, C., and Menini, C., Catal. Lett. 2003, vol. 88, p. 89.

    CAS  Google Scholar 

  24. Bartholomew, C.H. and Farrauto, R.J., J. Catal., 1976, vol. 45, p. 41.

    CAS  Google Scholar 

  25. d’Espinose de la Caillerie, J.-B., Kermarec, M., and Clause, O., J. Am. Chem. Soc., 1995, vol. 117, p. 11471.

    Google Scholar 

  26. Puxley, D.C., Kitchener, I.J., Komodromos, C., and Parkyns, N.D., The effect of preparation method upon the structures, stability and metal/support interactions in nickel/alumina catalysts, in Studies in Surface Science and Catalysis, Poncelet, G., Grange, P., and Jacobs, P.A., Eds., Elsevier, 1983, p. 237.

    Google Scholar 

  27. Zhao, A., Ying, W., Zhang, H., Ma, H., and Fang, D., Catal. Commun., 2012, vol. 17, p. 34.

    CAS  Google Scholar 

  28. Rynkowski, J.M., Paryjczak, T., and Lenik, M., Appl. Catal., A, 1993, vol. 106, p. 73.

  29. Lysova, A.A. and Koptyug, I.V., Chem. Soc. Rev., 2010, vol. 39, p. 4585.

    CAS  PubMed  Google Scholar 

  30. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., Nat. Methods., 2012, vol. 9, p. 671.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Małecka, B., Łącz, A., Drożdż, E., and Małecki, A., J. Therm. Anal. Calorim., 2015, vol. 119, p. 1053.

    Google Scholar 

  32. Elmasry, M.A.A., Gaber, A., and Khater, E.M.H., J. Therm. Anal. Calorim., 1998, vol. 52, p. 489.

    CAS  Google Scholar 

  33. Ho, S.-C. and Chou, T.-C., Ind. Eng. Chem. Res., 1995, vol. 34, p. 2279.

    CAS  Google Scholar 

  34. Heracleous, E., Lee, A.F., Wilson, K., and Lemonidou, A.A., J. Catal. 2005, vol. 231, p. 159.

    CAS  Google Scholar 

  35. Li, J., Ren, Y., Yue, B., and He, H., Chin. J. Catal., 2017, vol. 38, p. 1166.

    CAS  Google Scholar 

  36. Li, C. and Chen, Y.-W., Thermochim. Acta, 1995, vol. 256, p. 457.

    CAS  Google Scholar 

  37. Li, G., Hu, L., and Hill, J.M., Appl. Catal., A, 2006, vol. 301, p. 16.

  38. Bolt, P.H., Habraken, F.H.P.M., and Geus, J.W., J. Catal., 1995, vol. 151, p. 300.

    CAS  Google Scholar 

  39. Cesteros, Y., Salagre, P., Medina, F., and Sueiras, J.E., Chem. Mater., 2000, vol. 12, p. 331.

    CAS  Google Scholar 

  40. Turlier, P. and Martin, G.A., React. Kinet. Catal. Lett., 1982, vol. 19, p. 275.

    CAS  Google Scholar 

  41. Velu, S., Suzuki, K., Kapoor, M.P., Tomura, S., Ohashi, F., and Osaki, S., Chem. Mater., 2000, vol. 12, p. 719.

    CAS  Google Scholar 

  42. Molina, R. and Poncelet, G., J. Catal. 1998, vol. 173, p. 257.

    CAS  Google Scholar 

  43. Gil-Calvo, M., Jiménez-González, C., de Rivas, B., Gutiérrez-Ortiz, J.I., and López-Fonseca, R., Appl. Catal., B, 2017, vol. 209, p. 128.

    CAS  Google Scholar 

  44. de Bokx, P.K., Wassenberg, W.B.A., and Geus, J.W., J. Catal. 1987, vol. 104, p. 86.

    CAS  Google Scholar 

  45. Mansour, A.N., Surf. Sci. Spectra, 1994, vol. 3, p. 239.

    CAS  Google Scholar 

  46. Salvati, L., Makovsky, L.E., Stencel, J.M., Brown, F.R., and Hercules, D.M., J. Phys. Chem., 1981, vol. 85, p. 3700.

    CAS  Google Scholar 

  47. Aramendía, M.A., Boráu, V., García, I.M., Jiménez, C., Lafont, F., Marinas, A., Marinas, J.M., and Urbano, F.J., J. Catal., 1999, vol. 187, p. 392.

    Google Scholar 

  48. Choi, Y.H. and Lee, W.Y., Catal. Lett., 2000, vol. 67, p. 155.

    CAS  Google Scholar 

  49. Seshu Babu, N., Lingaiah, N., and Sai Prasad, P.S., Appl. Catal., B, 2012, vols. 111–112, p. 309.

    Google Scholar 

  50. Keane, M.A., ChemCatChem, 2011, vol. 3, p. 800.

    CAS  Google Scholar 

  51. Navalikhina, M.D., Kavalerskaya, N.E., Lokteva, E.S., Peristyi, A.A., Golubina, E.V., and Lunin, V.V., Russ. J. Phys. Chem. A, 2012, vol. 86, p. 1669.

    CAS  Google Scholar 

  52. Gómez-Sainero, L.M., Seoane, X.L., Fierro, J.L.G., and Arcoya, A., J. Catal., 2002, vol. 209, p. 279.

    Google Scholar 

  53. Li, R., Zhou, Z., Chen, J., Wang, S., Zheng, J., Chu, C., Zhao, J., Fan, H., and Han, D., New J. Chem., 2019, vol. 43, p. 6659.

    CAS  Google Scholar 

  54. Cesteros, Y., Salagre, P., Medina, F., and Sueiras, J.E., Appl. Catal., B, 2000, vol. 25, p. 213.

    CAS  Google Scholar 

  55. Mile, B., Stirling, D., Zammitt, M.A., Lovell, A., and Webb, M., J. Mol. Catal., 1990, vol. 62, p. 179.

    CAS  Google Scholar 

  56. Jiménez-González, C., Boukha, Z., de Rivas, B., Delgado, J.J., Cauqui, M.Á., González-Velasco, J.R., Gutiérrez-Ortiz, J.I., and López-Fonseca, R., Appl. Catal., A, 2013, vol. 466, p. 9.

  57. Hoffer, B.W., Dick van Langeveld, A., Janssens, J.-P., Bonné, R.L.C., Lok, C.M., and Moulijn, J.A., J. Catal., 2000, vol. 192, p. 432.

    CAS  Google Scholar 

Download references

Funding

This study was performed under the Research and Development program “Catalysis and physical chemistry of the surface” (АААА-А16-116092810057-8) of the Faculty of Chemistry, Moscow State University, using the equipment purchased with the funds of the Development Program of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Golubina.

Additional information

Translated by L. Smolina

Abbreviations: AAS, atomic absorption spectroscopy; CB HDC, chlorobenzene hydrodechlorination; EDS, energy dispersive analysis; FFT, fast Fourier transform; HRTEM, high-resolution transmission microscopy, SEM, scanning electron microscopy; XPS, X-ray photoelectron spectroscopy; TPR-Н2, temperature-programmed reduction; XRD, X-ray diffraction analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubina, E.V., Lokteva, E.S., Kavalerskaya, N.E. et al. Effect of Calcination Temperature on the Efficiency of Ni/Al2O3 in the Hydrodechlorination Reaction. Kinet Catal 61, 444–459 (2020). https://doi.org/10.1134/S002315842003012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842003012X

Keywords:

Navigation