Skip to main content
Log in

Synthesis of 1,3-Butadiene from 1-Butanol on a Porous Ceramic [Fe,Cr]/γ-Al2O3(K,Ce)/α-Al2O3 Catalytic Converter

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

—A two-stage method was developed for the synthesis of 1,3-butadiene by dehydration of 1-butanol to a mixture of butenes on γ-Al2O3 granules prepared by self-propagating high-temperature synthesis (SHS) followed by dehydrogenation of the butene fraction to 1,3-butadiene using a porous ceramic catalytic SHS converter [Fe,Cr]/γ-Al2O3(K,Ce)/α-Al2O3. The dehydration of 1-butanol to the butene mixture proceeded almost completely at ~100% selectivity on γ-Al2O3 granules obtained by SHS at 300°C, which is 50 degrees lower than on industrial gamma-alumina granules. The use of an original hybrid catalytic membrane reactor (HCMR) with selective removal of hydrogen from the reaction zone led to a ~1.3-fold increase in the yield of 1,3-butadiene at ultrapure hydrogen extraction of up to 16 mol % of the total amount of the hydrogen product. The catalytic activity of the system did not decrease after 20 h of experiment, in contrast to its activity in the industrial process, where catalyst regeneration is performed every 8–15 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Lebedev, S.V., Zh. Ross. Khim. Obshch., 1909, vol. 41, p. 42.

    Google Scholar 

  2. White, W.C., Chem.–Biol. Interact., 2007, vol. 166, nos. 1–3, p. 10

    Article  CAS  Google Scholar 

  3. Doelle, H.W., Rokem, J.S., and Berovic, M., Biotechnology,V. IV:Fundamentals in Biotechnology, Oxford: Eolss, 2009.

    Google Scholar 

  4. Ochoa, J.V., Bandinelli, C., Vozniuk, O., Chieregato, A., Malmusi, A., Recchi, C., and Cavani, F., Green Chem., 2016, vol. 18, no. 6, p. 1653.

    Article  CAS  Google Scholar 

  5. Farzad, S., Mandegari, M.A., and Görgens, J.F., Bioresour. Technol., 2017, vol. 239, p. 37.

    Article  CAS  Google Scholar 

  6. IHS Markit, Chemical Economics Handbook, Global butadiene production overview. https://ihsmarkit. com/products/butadiene-chemical-economics-handbook.html. Accessed July 25, 2019.

  7. Makshina, E.V., Dusselier, M., Janssens, W., Degrève, J., Jacobs, P.A., and Sels, B.F., Chem. Soc. Rev., 2014, vol. 43, no. 22, p. 7917.

    Article  CAS  Google Scholar 

  8. Arpe, H-J. and Hawkins, S. Industrial Organic Chemistry, New York: Wiley, 2010, 5th ed., p. 525.

    Google Scholar 

  9. Kondakov, I.L., Sinteticheskii kauchuk ego gomologi i analogi: Tip. Mattisena (Synthetic Rubber its Homologies and Analogies. Matissen Type), 1912, p. 151.

  10. Zhang, J., Wang, S., and Wang, Y. Advances in Bioenergy, Ch. 1: Biobutanol Production from Renewable Resources Recent Advances, Elsevier: Netherlands, 2016, vol. 1, p. 1.

  11. Doelle, H.W., Rokem, J.S., and Berovic, M., Biotechnology,V. VI:Fundamentals in Biotechnology, Oxford: Eolss, 2009.

    Google Scholar 

  12. Silvester, L., Lamonier, J.F, Lamonier, C., Capron, M., Vannier, R.N., Mamede, A.S., and Dumeignil, F., ChemCatChem, 2017, vol. 9, no. 12, p. 2250.

    Article  CAS  Google Scholar 

  13. Tsodikov, M.V., Yandieva, F.A., Kugel, V.Y., Chistyakov, A.V., Gekhman, A.E., and Moiseev, I.I., Catal. Lett., 2008, vol. 121, nos. 3–4, p. 199.

    Article  CAS  Google Scholar 

  14. Tsodikov, M.V., Chistyakov, A.V., Nikolaev, S.A., Kriventsov, V.V., Gekhman, A.E., and Moiseev, I.I., Chemistry of Biomass. Biofuels and Bioplastics: Scientific Word, 2017, p. 223.

  15. Research and Markets, Global Bio-Butanol Market. Segmented by Application and Geography 2017–2022. https://www.researchandmarkets.com/reports/4390693/ global-bio-butanol-market-segmented-by. Cited July 25, 2019.

  16. Biomass Magazine, Minnesota n-butanol plant comes online. http://biomassmagazine.com/articles/14006/ minnesota-butanol-plant-comes-online. Accessed July 25, 2019.

  17. Stabnikov, V.N., Peregonka i rektifikatsiya etilovogo spirta (Distillation and Rectification of Ethyl Alcohol), Moscow: Pishchevaya Promyshlennost’, 1969, 2nd ed., p. 456.

  18. Chistyakov, A.V., Zharova, P.A, Tsodikov, M.V., Nikolaev, S.A., Krotova, I.N., and Ezzhelenko, D.I., Kinet. Catal., 2016, vol. 57, no. 6, p. 803.

    Article  CAS  Google Scholar 

  19. Fedotov, A.S., Antonov, D.O., Uvarov, V.I., and Tsodikov, M.V., Int. J. Hydrogen Energy, 2018, vol. 43, no. 14, p. 7046.

    Article  CAS  Google Scholar 

  20. Tsodikov, M.V., Fedotov, A.S., Antonov, D.O., Uvarov, V.I., Bychkov, V.Y., and Luck, F.C., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, p. 2424.

    Article  CAS  Google Scholar 

  21. Fedotov, A.S., Antonov, D.O., Bukhtenko, O.V., Uvarov, V.I., Kriventsov, V.V., and Tsodikov, M.V., Int. J. Hydrogen Energy, 2017, vol. 42, no. 38, p. 24131.

    Article  CAS  Google Scholar 

  22. Kantaev, A.S. and Brus, I.D., Opredelenie razmera por fil’truyushchego elementa (Determination of Pore Size of Filtering Element), Tomsk: Tomsk Polytechnic University, 2014, p. 16.

  23. Guczi, L. and Erdöhelyi, A., Catalysis for Alternative Energy Generation, Berlin: Springer, 2012, p. 538.

    Book  Google Scholar 

  24. Khan, Y., Marin, M., Karinen, R., Lehtonen, J., and Kanervo, J., Chem. Eng. Sci., 2015, vol. 137, p. 740.

    Article  CAS  Google Scholar 

  25. Grub, J. and Löser, E., Butadiene, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley, 2012.

    Google Scholar 

  26. Berteau, P., Ruwet, M., and Delmon, B., Bull. Des Sociétés Chim.Belges, 1985, vol. 94, nos. 11–12, p. 859.

    CAS  Google Scholar 

  27. Phung, T.K., Lagazzo, A., Rivero Crespo, M.Á., Sánchez Escribano, V., and Busca, G., J. Catal., 2014, vol. 311, p. 102.

    Article  CAS  Google Scholar 

  28. Tyuryaev, I.Ya., Usp. Khim., 1966, vol. 35, no. 1, p. 121.

    Article  CAS  Google Scholar 

  29. Fedotov, A.S., Antonov, D.O., Uvarov, V.I., Tsodikov, M.V., and Khadzhiev, S.N., Pet. Chem., 2018, vol. 58, no. 1, p. 62.

    Article  Google Scholar 

  30. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W., Gerson, A. R., and Smart, R.S.C., Appl. Surf. Sci., 2011, vol. 257, no. 7, p. 2717.

    Article  CAS  Google Scholar 

  31. Teplyakov, V.V. and Tsodikov, M.V., Porous Inorganic Membrane Reactors. In Simulation of Membrane Reactors, Ed. A. Basile and F. Gallucci, New York: Nova Science, 2009, p. 123.

Download references

ACKNOWLEDGMENTS

We are grateful to D.O. Antonov for his help in performing catalytic experiments, and to Benjamin Katryniok, Joelle Thuriot, and Olivier Gardoll for help with SEM-EDX, XRD, and TG analyses.

A.S. Fedotov thanks the Embassy of France in Moscow for awarding him the “Mechnikov scholarship-2018: Scientific visits,” which made it possible to perform a wide range of structural analyses at the Catalysis and Solid State Chemistry Laboratory of the Lille University.

We also thank Chevreul Institute (FR 2638); Ministry of Higher Education, Research, and Innovation; Hauts-de-France region; National Center for Scientific Research; European Regional Development Fund; École centrale de Lille; and Central Initiative Fund for financial support.

Funding

This study was supported by the Russian Science Foundation (grant no. 17-13-01270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fedotov.

Additional information

Translated by L. Smolina

Abbreviations: GLC, gas-liquid chromatography; GC-MS, gas chromatography-mass spectrometry; FID, flame ionization detector; HCMR, hybrid catalytic membrane reactor; SHS, self-propagating high-temperature synthesis; SEM-EDX, scanning electron microscopy with energy dispersive X-ray spectroscopy; TGA, thermogravimetric analysis; TPReduction-H2, thermally programmed reduction with hydrogen; TEM, transmission electron microscopy; XPS, X-ray photoelectron spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, A.S., Uvarov, V.I., Tsodikov, M.V. et al. Synthesis of 1,3-Butadiene from 1-Butanol on a Porous Ceramic [Fe,Cr]/γ-Al2O3(K,Ce)/α-Al2O3 Catalytic Converter. Kinet Catal 61, 390–404 (2020). https://doi.org/10.1134/S002315842003009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842003009X

Keywords:

Navigation