Skip to main content
Log in

Effect of Preparation Method and Support on Catalytic Behavior of Rhodium Nanoparticles in Styrene Hydrogenation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The Rh nanoparticles supported on silica were prepared by hydrazine reduction in aqueous medium. The obtained catalysts are characterized by X-ray diffraction, transmission electronic microscopy, and energy dispersive X-ray analysis. Their catalytic performances were evaluated in the hydrogenation of styrene. The results show that the catalytic activity has been greatly affected by the temperature, silica support and the method of preparation. The activity of supported catalyst is about 12 times that of the unsupported systems. Moreover, the catalytic activity of the supported catalysts increases when the Rh loading decreases. This is ascribed to the degree of the metal dispersion, which increases with a decrease in the Rh loading in the catalysts. The results reveal also that the catalyst prepared by programmed temperature reduction seems to be more catalytically active than the catalyst prepared by the isothermal reduction procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cox, A.J., Louderback, J.G., and Bloomfield, L.A., Phys. Rev. Lett., 1993, vol. 71, p. 923.

    Article  CAS  Google Scholar 

  2. Palpant, B., Prevel B., Lerme J., Cottancin E., Pellarin M., Treilleux M., Perez A., Vialle J.L., and Broyer, M., Phys. Rev. B, 1998, vol. 57, p. 1963.

    Article  CAS  Google Scholar 

  3. Bawendi, M.G., Wilson, W.L., Rothberg, L., Carroll, P.J., Jedju, T.M., Steigerwald, M.L., and Brus, L.E., Phys. Rev. Lett., 1990, vol. 65, p. 1623.

    Article  CAS  Google Scholar 

  4. Soltani, A. and Boudjahem, A., Comput. Theor. Chem., 2014, vol. 1047, p. 6.

    Article  CAS  Google Scholar 

  5. Mokrane, T., Boudjahem, A.G., and Bettahar, M., RSC Adv., 2016, vol. 6, p. 59858.

    Article  CAS  Google Scholar 

  6. Boudjahem, A.G., Mokrane, T., Redjel, A., and Bettahar, M.M., C.R. Chim., 2010, vol. 13, p. 1433.

    Article  CAS  Google Scholar 

  7. Redjel, A., Boudjahem, A.G., and Bettahar, M., Part. Sci. Technol., 2018, vol. 36, p. 710.

    Article  CAS  Google Scholar 

  8. Pellegatta, J.L., Blandy, C., Collière, V., Choukroun, R., Chaudret, B., Cheng, P., and Philippot, K., J. Mol. Catal. A, 2002, vol. 178, p. 55.

    Article  CAS  Google Scholar 

  9. Jiang, H.Y. and Zheng, X.X., Appl. Catal., A, 2015, vol. 499, p. 118.

  10. Akbayrak, S., J. Colloid Interface Sci., 2018, vol. 530, p. 459.

    Article  CAS  Google Scholar 

  11. Kuklin, S., Maximov, A., Zolotukhina, A., and Karakhanov, E., Catal. Commun., 2016, vol. 73, p. 63.

    Article  CAS  Google Scholar 

  12. Zhang, H., Han, A., Okumura, K., Zhong, L., Li, S., Jaenicke, S., and Chuah, G.K., J. Catal., 2018, vol. 364, p. 354.

    Article  CAS  Google Scholar 

  13. Ertas, I.E., Gulcan, M., Bulut, A., Yurderi, M., and Zahmakiran, M., J. Mol. Catal. A: Chem., 2015, vol. 410, p. 209.

    Article  CAS  Google Scholar 

  14. Harada, M., Abe, D., and Kimura, Y., J. Colloid Interface Sci., 2005, vol. 292, p. 113.

    Article  CAS  Google Scholar 

  15. Kanat, M., Karataş, Y., Gülcan, M., and Anıl, B., Int. J. Hydrogen Energy, 2018, vol. 43, p. 22548.

    Article  CAS  Google Scholar 

  16. Biacchi, A.J. and Schaak, R.E., J. Catal., 2011, vol. 5, p. 8089.

    CAS  Google Scholar 

  17. Del Angel, G., Coq, B., Dutartre, R., and Figueras, F., J. Catal., 1984, vol. 87, p. 27.

    Article  CAS  Google Scholar 

  18. Coq, B., Dutartre, R., Figueras, F., and Tazi, T., J. Catal., 1990, vol. 122, p. 438.

    Article  CAS  Google Scholar 

  19. Wang, H.Y. and Ruckenstein, E., Appl. Catal., A, 2000, vol. 204, p. 143.

  20. Yates, D.J. and Sinfelt, J.H., J. Catal., 1967, vol. 8, p. 348.

    Article  CAS  Google Scholar 

  21. Worley, S.D., Rice, C.A., Mattson, G.A., Curtis, C.W., Guin, J.A., and Tarrer, A.R., J. Chem. Phys., 1982, vol. 76, p. 20.

    Article  CAS  Google Scholar 

  22. Mizuno, T., Matsumura, Y., Nakajima, T., and Mishima, S., Int. J. Hydrogen Energy, 2003, vol. 28, p. 1393.

    Article  CAS  Google Scholar 

  23. Simagina, V.I., Netskina, O.V., Komova, O.V., Odegova, G.V., Kochubei, D.I., and Ishchenko, A.V., Kinet. Catal., 2008, vol. 49, p. 568.

    Article  CAS  Google Scholar 

  24. Ojeda, M., Rojas, S., Boutonnet, M., Pérez-Alonso, F.J., García-García, F.J., and Fierro, J.L.G., Appl. Catal., A, 2004, vol. 274, p. 33.

  25. Abdul-Wahab, M.I. and Jackson, S.D., Appl. Catal., A, 2013, vol. 462, p. 121.

  26. Beyer, H., Emmerich, J., Chatziapostolou, K., and Köhler, K., Appl. Catal., A, 2011, vol. 391, p. 411.

  27. Boudjahem, A.G., Redjel, A., and Mokrane, T., J. Ind. Eng. Chem., 2012, vol. 18, p. 303.

    Article  CAS  Google Scholar 

  28. Boudjahem, A.G., Monteverdi, S., Mercy, M., and Bettahar, M., J. Catal., 2004, vol. 221, p. 325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Gherib or A. G. Boudjahem.

Additional information

Abbreviations: EDX, energy dispersive X-ray analysis; TEM, transmission electronic microscopy; XRD, X-ray diffraction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gherib, H., Boudjahem, A.G. & Medjahdi, G. Effect of Preparation Method and Support on Catalytic Behavior of Rhodium Nanoparticles in Styrene Hydrogenation. Kinet Catal 61, 466–472 (2020). https://doi.org/10.1134/S0023158420030106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420030106

Keywords:

Navigation