Skip to main content
Log in

Few-layer metasurfaces with arbitrary scattering properties

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Metasurfaces, which are planar arrays of subwavelength artificial structures, have emerged as excellent platforms for the integration and miniaturization of electromagnetic devices and provided ample possibilities for single-dimensional and multidimensional manipulations of electromagnetic waves. However, owing to the limited interactions between planar thin metallic nanostructures and electromagnetic waves as well as intrinsic losses in metals, metasurfaces exhibit disadvantages in terms of efficiency, controllability, and functionality. Recent advances in this field show that few-layer metasurfaces can overcome these drawbacks. Few-layer metasurfaces composed of more than one functional layer enable more degrees of design freedom. Hence, they possess unprecedented capabilities for electromagnetic wave manipulation, which have considerable impact in the area of nanophotonics. This article reviews recent advances in few-layer metasurfaces from the viewpoint of their scattering properties. The scattering matrix theory is briefly introduced, and the advantages and drawbacks of few-layer metasurfaces for the realization of arbitrary scattering properties are discussed. Then, a detailed overview of typical few-layer metasurfaces with various scattering properties and their design principles is provided. Finally, an outlook on the future directions and challenges in this promising research area is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. I. Zheludev, Science 348, 973 (2015).

    ADS  Google Scholar 

  2. J. Wang, Sci. China-Phys. Mech. Astron. 62, 34201 (2019).

    ADS  Google Scholar 

  3. Q. H. Song, Sci. China-Phys. Mech. Astron. 62, 074231 (2019).

    Google Scholar 

  4. L. K. Chen, and Y. F. Xiao, Sci. China-Phys. Mech. Astron. 63, 224231 (2019).

    ADS  Google Scholar 

  5. Y. Liu, and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011).

    Google Scholar 

  6. N. I. Zheludev, and Y. S. Kivshar, Nat. Mater. 11, 917 (2012).

    ADS  Google Scholar 

  7. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7, 948 (2013).

    ADS  Google Scholar 

  8. X. G. Luo, Sci. China-Phys. Mech. Astron. 58, 594201 (2015).

    ADS  Google Scholar 

  9. N. Meinzer, W. L. Barnes, and I. R. Hooper, Nat. Photon. 8, 889 (2014).

    ADS  Google Scholar 

  10. S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, Adv. Mater. 31, 1802458 (2019).

    Google Scholar 

  11. S. Chen, W. Liu, Z. Li, H. Cheng, and J. Tian, Adv. Mater. 32, 1805912 (2020).

    Google Scholar 

  12. W. Du, X. Wen, D. Gérard, C. W. Qiu, and Q. Xiong, Sci. China- Phys. Mech. Astron. 63, 244201 (2020).

    Google Scholar 

  13. R. Y. Wu, L. Bao, L. W. Wu, and T. J. Cui, Sci. China-Phys. Mech. Astron. 63, 284211 (2020).

    Google Scholar 

  14. H. H. Hsiao, C. H. Chu, and D. P. Tsai, Small Methods 1, 1600064 (2017).

    Google Scholar 

  15. S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, Adv. Opt. Mater. 6, 1800104 (2018).

    Google Scholar 

  16. W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, Phys. Rev. Appl. 8, 014012 (2017).

    ADS  Google Scholar 

  17. X. Luo, Adv. Mater. 31, 1804680 (2019).

    Google Scholar 

  18. D. Neshev, and I. Aharonovich, Light Sci. Appl. 7, 58 (2018).

    ADS  Google Scholar 

  19. X. Luo, D. P. Tsai, M. Gu, and M. Hong, Adv. Opt. Photon. 10, 757 (2018).

    Google Scholar 

  20. S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, Adv. Opt. Photon. 11, 380 (2019).

    Google Scholar 

  21. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).

    ADS  Google Scholar 

  22. Y. Zhao, and A. Alù, Nano Lett. 13, 1086 (2013).

    ADS  Google Scholar 

  23. Y. W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, Nano Lett. 15, 3122 (2015).

    ADS  Google Scholar 

  24. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 335, 427 (2012).

    ADS  Google Scholar 

  25. Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, Adv. Opt. Mater. 4, 1230 (2016).

    Google Scholar 

  26. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, Nano Lett. 12, 6328 (2012).

    ADS  Google Scholar 

  27. C. Menzel, C. Rockstuhl, and F. Lederer, Phys. Rev. A 82, 053811 (2010).

    ADS  Google Scholar 

  28. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, Nano Lett. 15, 6261 (2015).

    ADS  Google Scholar 

  29. L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, Optica 3, 1504 (2016).

    ADS  Google Scholar 

  30. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, Nano Lett. 16, 4595 (2016).

    ADS  Google Scholar 

  31. H. Zuo, D. Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, Adv. Opt. Mater. 5, 1700585 (2017).

    Google Scholar 

  32. S. Gao, C. Park, S. Lee, and D. Choi, Adv. Opt. Mater. 7, 1801337 (2019).

    Google Scholar 

  33. S. Gao, C. Park, C. Zhou, S. Lee, and D. Choi, Adv. Opt. Mater. 7, 1900883 (2019).

    Google Scholar 

  34. J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, Phys. Rev. Lett. 118, 113901 (2017).

    ADS  Google Scholar 

  35. W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, Adv. Mater. 30, 1706368 (2018).

    Google Scholar 

  36. W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, Adv. Mater. 31, 1901729 (2019).

    Google Scholar 

  37. H. Cheng, Z. Liu, S. Chen, and J. Tian, Adv. Mater. 27, 5410 (2015).

    Google Scholar 

  38. S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, Adv. Opt. Mater. 7, 1801477 (2019).

    Google Scholar 

  39. A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, Nat. Commun. 7, 10360 (2016).

    ADS  Google Scholar 

  40. W. L. Guo, K. Chen, G. M. Wang, X. Y. Luo, Y. J. Feng, and C. W. Qiu, IEEE Trans. Antennas Propagat. 68, 1426 (2020).

    ADS  Google Scholar 

  41. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, Adv. Mater. 29, 1606422 (2017).

    Google Scholar 

  42. K. Achouri, and C. Caloz, Nanophotonics 7, 1095 (2018).

    Google Scholar 

  43. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, Ch. 7, (Wiley, Hoboken, 2007), pp. 246–279.

    Google Scholar 

  44. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, Appl. Phys. Lett. 99, 253104 (2011).

    ADS  Google Scholar 

  45. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, J. Opt. 14, 085102 (2012).

    ADS  Google Scholar 

  46. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, Optica 4, 601 (2017).

    ADS  Google Scholar 

  47. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, Sci. Rep. 5, 18106 (2016).

    ADS  Google Scholar 

  48. T. Li, X. Hu, H. Chen, C. Zhao, Y. Xu, X. Wei, and G. Song, Opt. Express 25, 23597 (2017).

    ADS  Google Scholar 

  49. Z. Ma, S. M. Hanham, Y. Gong, and M. Hong, Opt. Lett. 43, 911 (2018).

    ADS  Google Scholar 

  50. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, Opt. Lett. 40, 3185 (2015).

    ADS  Google Scholar 

  51. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, Opt. Lett. 41, 3142 (2016).

    ADS  Google Scholar 

  52. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).

    ADS  Google Scholar 

  53. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, Phys. Rev. B 80, 153104 (2009).

    ADS  Google Scholar 

  54. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

    ADS  Google Scholar 

  55. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, Science 352, 1202 (2016).

    ADS  Google Scholar 

  56. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, ACS Photon. 3, 1558 (2016).

    Google Scholar 

  57. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, Nat. Nanotech. 10, 308 (2015).

    ADS  Google Scholar 

  58. X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. W. Qiu, and S. Zhang, Adv. Opt. Mater. 3, 1201 (2015).

    Google Scholar 

  59. Y. Zhang, W. Liu, J. Gao, and X. Yang, Adv. Opt. Mater. 6, 1701228 (2018).

    Google Scholar 

  60. H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, Appl. Phys. Lett. 110, 171903 (2017).

    ADS  Google Scholar 

  61. X. Zhang, M. Pu, J. Jin, X. Li, P. Gao, X. Ma, C. Wang, and X. Luo, Annalen Der Phys. 529, 1700248 (2017).

    ADS  Google Scholar 

  62. C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, ACS Photon. 4, 1906 (2017).

    Google Scholar 

  63. Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z. K. Zhou, and X. H. Wang, Adv. Funct. Mater. 28, 1805306 (2018).

    Google Scholar 

  64. X. Wang, A. Díaz-Rubio, V. S. Asadchy, G. Ptitcyn, A. A. Generalov, J. Ala- Laurinaho, and S. A. Tretyakov, Phys. Rev. Lett. 121, 256802 (2018).

    ADS  Google Scholar 

  65. A. Arbabi, and A. Faraon, Sci. Rep. 7, 43722 (2017).

    ADS  Google Scholar 

  66. W. Luo, S. Sun, H. X. Xu, Q. He, and L. Zhou, Phys. Rev. Appl. 7, 044033 (2017).

    ADS  Google Scholar 

  67. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, Nat. Mater. 15, 263 (2016).

    ADS  Google Scholar 

  68. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, Adv. Mater. 27, 1195 (2015).

    Google Scholar 

  69. H. T. Chen, Opt. Express 20, 7165 (2012).

    ADS  Google Scholar 

  70. R. Fan, B. Xiong, R. Peng, and M. Wang, Adv. Mater. 32, 1904646 (2019).

    Google Scholar 

  71. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater. 11, 426 (2012).

    ADS  Google Scholar 

  72. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, Nano Lett. 12, 6223 (2012).

    ADS  Google Scholar 

  73. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, Opt. Lett. 38, 513 (2013).

    ADS  Google Scholar 

  74. S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, Phys. Rev. X 4, 021026 (2014).

    Google Scholar 

  75. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Science 340, 1304 (2013).

    ADS  Google Scholar 

  76. D. Y. Liu, M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, Opt. Express 22, 11707 (2014).

    ADS  Google Scholar 

  77. H. Chen, H. Ma, J. Wang, S. Qu, Y. Pang, M. Yan, and Y. Li, Appl. Phys. A 122, 463 (2016).

    ADS  Google Scholar 

  78. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, Appl. Phys. Lett. 103, 171107 (2013).

    ADS  Google Scholar 

  79. Y. Zhao, N. Engheta, and A. Alù, Metamaterials 5, 90 (2011).

    ADS  Google Scholar 

  80. A. N. Askarpour, Y. Zhao, and A. Alù, Phys. Rev. B 90, 054305 (2014).

    ADS  Google Scholar 

  81. L. Jing, Z. Wang, Y. Yang, L. Shen, B. Zheng, F. Gao, H. Wang, E. Li, and H. Chen, IEEE Trans. Antennas Propagat. 66, 7148 (2018).

    ADS  Google Scholar 

  82. C. Pfeiffer, and A. Grbic, Phys. Rev. Appl. 2, 044011 (2014).

    ADS  Google Scholar 

  83. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, Phys. Rev. Lett. 113, 023902 (2014).

    ADS  Google Scholar 

  84. C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, Optica 3, 427 (2016).

    ADS  Google Scholar 

  85. Z. Li, W. Liu, H. Cheng, D. Choi, S. Chen, and J. Tian, Adv. Opt. Mater. 7, 1900260 (2019).

    Google Scholar 

  86. M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, Light Sci Appl 8, 16 (2019).

    Google Scholar 

  87. S. Tang, T. Cai, J. G. Liang, Y. Xiao, C. W. Zhang, Q. Zhang, Z. Hu, and T. Jiang, Opt. Express 27, 1816 (2019).

    ADS  Google Scholar 

  88. P. Yu, J. Li, C. Tang, H. Cheng, Z. Liu, Z. Li, Z. Liu, C. Gu, J. Li, S. Chen, and J. Tian, Light Sci Appl 5, e16096 (2016).

  89. J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, Adv. Opt. Mater. 4, 2028 (2016).

    Google Scholar 

  90. Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, Phys. Rev. Appl. 9, 064009 (2018).

    ADS  Google Scholar 

  91. W. Ji, T. Cai, G. Wang, H. Li, C. Wang, H. Hou, and C. Zhang, Opt. Express 27, 2844 (2019).

    ADS  Google Scholar 

  92. Z. H. Jiang, L. Kang, T. Yue, H. Xu, Y. Yang, Z. Jin, C. Yu, W. Hong, D. H. Werner, and C. Qiu, Adv. Mater. 32, 1903983 (2020).

    Google Scholar 

  93. Y. Zhao, J. Shi, L. Sun, X. Li, and A. Alù, Adv. Mater. 26, 1439 (2014).

    Google Scholar 

  94. Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, Plasmonics 10, 1703 (2015).

    Google Scholar 

  95. C. C. Chang, L. Huang, J. Nogan, and H. T. Chen, APL Photonics 3, 051602 (2018).

    ADS  Google Scholar 

  96. Y. Zhao, M. A. Belkin, and A. Alù, Nat. Commun. 3, 870 (2012).

    ADS  Google Scholar 

  97. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, Phys. Rev. Lett. 104, 253902 (2010).

    ADS  Google Scholar 

  98. M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, Opt. Express 19, 8347 (2011).

    ADS  Google Scholar 

  99. Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, Appl. Phys. Lett. 105, 201103 (2014).

    ADS  Google Scholar 

  100. J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, Appl. Phys. Lett. 98, 151908 (2011).

    ADS  Google Scholar 

  101. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, Phys. Rev. B 85, 195131 (2012).

    ADS  Google Scholar 

  102. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012).

    ADS  Google Scholar 

  103. J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, Phys. Rev. B 89, 165128 (2014).

    ADS  Google Scholar 

  104. C. Zhang, C. Pfeiffer, T. Jang, V. Ray, M. Junda, P. Uprety, N. Podraza, A. Grbic, and L. J. Guo, Laser Photon. Rev. 10, 791 (2016).

    ADS  Google Scholar 

  105. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, Sci. Rep. 7, 8204 (2017).

    ADS  Google Scholar 

  106. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, Nano Lett. 14, 1021 (2014).

    ADS  Google Scholar 

  107. C. Huang, Y. Zhang, Y. Wang, and L. Kong, Phys. Rev. Appl. 10, 064038 (2018).

    ADS  Google Scholar 

  108. M. Zhang, Q. Lu, and H. Zheng, J. Opt. Soc. Am. B 35, 689 (2018).

    ADS  Google Scholar 

  109. M. A. Cole, W. Chen, M. Liu, S. S. Kruk, W. J. Padilla, I. V. Shadrivov, and D. A. Powell, Phys. Rev. Appl. 8, 014019 (2017).

    ADS  Google Scholar 

  110. H. Zhao, Z. Chen, R. Zhao, and L. Feng, Nat. Commun. 9, 1764 (2018).

    ADS  Google Scholar 

  111. S. H. G. Chang, and C. Y. Sun, Opt. Express 24, 16822 (2016).

    ADS  Google Scholar 

  112. X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, Opt. Express 25, 11778 (2017).

    ADS  Google Scholar 

  113. H. Yin, R. Bai, X. Gu, C. Zhang, G. R. Gu, Y. Q. Zhang, X. R. Jin, and Y. P. Lee, Opt. Commun. 414, 172 (2018).

    ADS  Google Scholar 

  114. D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, Nano Lett. 19, 3976 (2019).

    ADS  Google Scholar 

  115. Z. Li, W. Liu, H. Cheng, J. Liu, S. Chen, and J. Tian, Sci. Rep. 6, 35485 (2016).

    ADS  Google Scholar 

  116. T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, Phys. Rev. Appl. 8, 034033 (2017).

    ADS  Google Scholar 

  117. W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, Opt. Express 26, 17447 (2018).

    ADS  Google Scholar 

  118. Y. Jing, Y. Li, J. Zhang, J. Wang, M. Feng, H. Ma, and S. Qu, Opt. Express 27, 21520 (2019).

    ADS  Google Scholar 

  119. T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, Adv. Opt. Mater. 5, 1600506 (2017).

    Google Scholar 

  120. T. Cai, G. M. Wang, H. X. Xu, S. W. Tang, H. Li, J. G. Liang, and Y. Q. Zhuang, Annalen Der Phys. 530, 1700321 (2018).

    ADS  Google Scholar 

  121. Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, Opt. Express 26, 3594 (2018).

    ADS  Google Scholar 

  122. K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alù, and C. Qiu, Adv. Mater. 32, 1906352 (2020).

    Google Scholar 

  123. B. Yang, T. Liu, H. Guo, S. Xiao, and L. Zhou, Sci. Bull. 64, 823 (2019).

    Google Scholar 

  124. A. Forouzmand, and H. Mosallaei, ACS Photon. 5, 1427 (2018).

    Google Scholar 

  125. H. Xu, G. Hu, M. Jiang, S. Tang, Y. Wang, C. Wang, Y. Huang, X. Ling, H. Liu, and J. Zhou, Adv. Mater. Technol. 5, 1900710 (2020).

    Google Scholar 

  126. Y. Zhou, I. I. Kravchenko, H. Wang, H. Zheng, G. Gu, and J. Valentine, Light Sci. Appl. 8, 80 (2019).

    ADS  Google Scholar 

  127. A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, Nat. Photon. 11, 415 (2017).

    ADS  Google Scholar 

  128. H. Kwon, E. Arbabi, S. M. Kamali, M. S. Faraji-Dana, and A. Faraon, Nat. Photon. 14, 109 (2020).

    ADS  Google Scholar 

  129. Z. Wu, Y. Ra'di, and A. Grbic, Phys. Rev. X 9, 011036 (2019).

    Google Scholar 

  130. W. Ma, F. Cheng, and Y. Liu, ACS Nano 12, 6326 (2018).

    Google Scholar 

  131. Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, Nano Lett. 18, 6570 (2018).

    ADS  Google Scholar 

  132. Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, Phys. Rev. Lett. 123, 213902 (2019).

    ADS  Google Scholar 

  133. Z. Wu, M. Zhou, E. Khoram, B. Liu, and Z. Yu, Photon. Res. 8, 46 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Cheng or Shuqi Chen.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0301102, and 2017YFA0303800), the National Natural Science Fund for Distinguished Young Scholar (Grant No. 11925403), the National Natural Science Foundation of China (Grant Nos. 11974193, 11904181, 11904183, 91856101, and 11774186), the Natural Science Foundation of Tianjin for Distinguished Young Scientists (Grant No. 18JCJQJC45700), the National Postdoctoral Program for Innovative Talents (Grant No. BX20180148), and the China Postdoctoral Science Foundation (Grant Nos. 2018M640224, and 2018M640229).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, W., Cheng, H. et al. Few-layer metasurfaces with arbitrary scattering properties. Sci. China Phys. Mech. Astron. 63, 284202 (2020). https://doi.org/10.1007/s11433-020-1583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1583-3

Keywords

Navigation