Skip to main content
Log in

A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

With its tremendous success in many machine learning and pattern recognition tasks, deep learning, as one type of data-driven models, has also led to many breakthroughs in other disciplines including physics, chemistry and material science. Nevertheless, the supremacy of deep learning over conventional optimization approaches heavily depends on the huge amount of data collected in advance to train the model, which is a common bottleneck of such a data-driven technique. In this work, we present a comprehensive deep learning model for the design and characterization of nanophotonic structures, where a self-supervised learning mechanism is introduced to alleviate the burden of data acquisition. Taking reflective metasurfaces as an example, we demonstrate that the self-supervised deep learning model can effectively utilize randomly generated unlabeled data during training, with the total test loss and prediction accuracy improved by about 15% compared with the fully supervised counterpart. The proposed self-supervised learning scheme provides an efficient solution for deep learning models in some physics-related tasks where labeled data are limited or expensive to collect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

    ADS  Google Scholar 

  2. C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).

    Google Scholar 

  3. X. Zhang, and Z. Liu, Nat. Mater. 7, 435 (2008).

    ADS  Google Scholar 

  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).

    ADS  Google Scholar 

  5. W. X. Tang, Z. L. Mei, and T. J. Cui, Sci. China-Phys. Mech. Astron. 58, 127001 (2015).

    Google Scholar 

  6. X. Luo, ACS Photon. 5, 4724 (2018).

    Google Scholar 

  7. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, Nat. Photon. 12, 659 (2018).

    ADS  Google Scholar 

  8. Y. Lecun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015).

    ADS  Google Scholar 

  9. B. Sanchez-Lengeling, and A. Aspuru-Guzik, Science 361, 360 (2018).

    ADS  Google Scholar 

  10. G. B. Goh, N. O. Hodas, and A. Vishnu, J. Comput. Chem. 38, 1291 (2017).

    Google Scholar 

  11. T. Zahavy, A. Dikopoltsev, D. Moss, G. I. Haham, O. Cohen, S. Mannor, and M. Segev, Optica 5, 666 (2018).

    ADS  Google Scholar 

  12. P. Baldi, P. Sadowski, and D. Whiteson, Nat. Commun. 5, 4308 (2014).

    ADS  Google Scholar 

  13. J. Carrasquilla, and R. G. Melko, Nat. Phys. 13, 431 (2017).

    Google Scholar 

  14. L. Pilozzi, F. A. Farrelly, G. Marcucci, and C. Conti, Commun. Phys. 1, 1 (2018).

    Google Scholar 

  15. D. Melati, Y. Grinberg, M. Kamandar Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. X. Xu, Nat. Commun. 10, 1 (2019).

    Google Scholar 

  16. M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, Sci. Rep. 9, 1 (2019).

    Google Scholar 

  17. O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandeh-shahvar, and A. Adibi, Nanoscale 11, 21266 (2019).

    Google Scholar 

  18. I. Sajedian, T. Badloe, and J. Rho, Opt. Express 27, 5874 (2019).

    ADS  Google Scholar 

  19. J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, ACS Nano 13, 8872 (2019).

    Google Scholar 

  20. Z. Liu, D. Zhu, K.-T. Lee, A. S. Kim, L. Raju, and W. Cai, Adv. Mater. 32, 1904790 (2020).

    Google Scholar 

  21. W. Ma, F. Cheng, and Y. Liu, ACS Nano 12, 6326 (2018).

    Google Scholar 

  22. Y. Chen, J. Zhu, Y. Xie, N. Feng, and Q. H. Liu, Nanoscale 11, 9749 (2019).

    Google Scholar 

  23. W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, Adv. Mater. 31, 1901111 (2019).

    Google Scholar 

  24. J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. De-Lacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, Sci. Adv. 4, eaar4206 (2018).

    ADS  Google Scholar 

  25. S. So, J. Mun, and J. Rho, ACS Appl. Mater. Interfaces 11, 24264 (2019).

    Google Scholar 

  26. I. Sajedian, J. Kim, and J. Rho, Microsyst. Nanoeng. 5, 27 (2019).

    ADS  Google Scholar 

  27. Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, and W. Cai, Nano Lett. 18, 6570 (2018).

    ADS  Google Scholar 

  28. I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Su-chowski, Light Sci Appl 7, 1 (2018).

    Google Scholar 

  29. T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu, Photon. Res. 7, 368 (2019).

    Google Scholar 

  30. T. Asano, and S. Noda, Opt. Express 26, 32704 (2018).

    ADS  Google Scholar 

  31. D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, in 37th Advances in Neural Information Processing Systems, Montreal, 9–13 December 2014. pp. 3581–3589.

  32. M. Raissi, P. Perdikaris, and G. E. Karniadakis, J. Comput. Phys. 378, 686 (2019).

    MathSciNet  ADS  Google Scholar 

  33. Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, ACS Photon. 6, 1168 (2019).

    Google Scholar 

  34. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 339, 1232009 (2013).

    Google Scholar 

  35. N. Yu, and F. Capasso, Nat. Mater. 13, 139 (2014).

    ADS  Google Scholar 

  36. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).

    ADS  Google Scholar 

  37. W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, ACS Photonics 4, 1770 (2017).

    Google Scholar 

  38. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, Nat. Nanotech. 13, 227 (2018).

    ADS  Google Scholar 

  39. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, Nat. Nanotech. 13, 220 (2018).

    ADS  Google Scholar 

  40. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Nano Lett. 12, 1702 (2012).

    ADS  Google Scholar 

  41. A. Pors, and S. I. Bozhevolnyi, Opt. Express 21, 2942 (2013).

    ADS  Google Scholar 

  42. C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Sha-laev, and A. Grbic, Nano Lett. 14, 2491 (2014).

    ADS  Google Scholar 

  43. J. Neu, R. Beigang, and M. Rahm, Appl. Phys. Lett. 103, 041109 (2013).

    ADS  Google Scholar 

  44. X. Ni, A. V. Kildishev, and V. M. Shalaev, Nat. Commun. 4, 2807 (2013).

    ADS  Google Scholar 

  45. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, Nat. Nanotech. 10, 308 (2015).

    ADS  Google Scholar 

  46. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater. 11, 426 (2012).

    ADS  Google Scholar 

  47. Y. Liu, and X. Zhang, Appl. Phys. Lett. 103, 141101 (2013).

    ADS  Google Scholar 

  48. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, Nature 522, 192 (2015).

    ADS  Google Scholar 

  49. Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, Phys. Rev. Lett. 117, 157401 (2016).

    ADS  Google Scholar 

  50. Z. Su, F. Cheng, L. Li, and Y. Liu, ACS Photon. 6, 1947 (2019).

    Google Scholar 

  51. Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, in 30th Advances in Neural Information Processing Systems, Barcelona, 2016. pp. 2352–2360.

    Google Scholar 

  52. D. P. Kingma and M. Welling, in Proceedings of the 2nd International Conference on Learning Representations (ICLR), Banff, 2014. pp. 14–16.

    Google Scholar 

  53. A. Kolesnikov, X. Zhai, and L. Beyer, in Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15–20 June 2019. pp. 1920–1929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmin Liu.

Additional information

This work was supported by the National Science Foundation (Grant No. ECCS-1916839).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Liu, Y. A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures. Sci. China Phys. Mech. Astron. 63, 284212 (2020). https://doi.org/10.1007/s11433-020-1575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1575-2

Keywords

Navigation