Skip to main content

Advertisement

Log in

Use of cyclodextrins to improve the production of plant bioactive compounds

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Cyclodextrins are cyclic oligosaccharides consisting of d-glucopyranose units bound via α-(1,4)-glycosidic linkages. They are obtained from starch enzymatic degradation by the action of cyclodextrinases or glycosyltransferases. Among the modified-cyclodextrins, 2-hydroxypropylated and methylated β-cyclodextrins are produced on industrial scale. Particularly, methylated β-cyclodextrins are more suitable than native β-cyclodextrins to form stable inclusion complexes with organic molecules of low molecular weight, making these complexes more soluble in aqueous solutions. Cyclodextrins have often been considered useful carriers of antitumor- and immuno-regulatory drugs, and they have also been used as additives for food industry. It is also important to note that cyclodextrins are used for improving bioactive compound production in plant cell cultures because of cyclodextrins ability as “hosts” of bioactive compounds favoring their accumulation in aqueous media. In fact, the treatment of plant cell cultures with cyclodextrins and their derivatives increases the production of secondary metabolites such as resveratrol, ajmalicine, serpentine, lutein, arachidin, among other antioxidant compounds, enhancing the capability of plant in vitro cultures to produce high levels of different bioactive compounds which have beneficial properties for human health. In addition, metabolomic, transcriptomic, and proteomic studies have been carried out on both control and cyclodextrins-treated cell cultures offering important clues about how cyclodextrins are capable of substantially increasing the production of bioactive compounds in plant in vitro cultures. This review focuses on the effect of cyclodextrins on both bioactive compound production and their accumulation, which could be of great interest for chemical and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

CD:

Cyclodextrins

DW:

Dry weight

FW:

Fresh weight

GSTU:

Tau class glutathione-S-transferase

ITC:

Isothermal titration calorimetry

MJ:

Methyl jasmonate

NMR:

Nuclear magnetic resonance

ROS:

Reactive oxygen species

References

  • Almagro L, Perez AL, Pedreño MA (2011) New method to enhance ajmalicine production in Catharanthus roseus cell cultures based on the use of cyclodextrins. Biotechnol Lett 33:381–385

    PubMed  CAS  Google Scholar 

  • Almagro L, Bru R, Pugin A, Pedreño MA (2012) Early signaling network in tobacco cells elicited with methyl jasmonate and cyclodextrins. Plant Physiol Biochem 51:1–9

    PubMed  CAS  Google Scholar 

  • Almagro L, Sottomayor M, Pedreño MA (2013) Bioproduction of terpenoid indole alkaloids from Catharanthus roseus cell cultures. In: Ramawat KG, Merillon JM (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes, handbook of natural products. Springer, Berlin, pp 85–117

    Google Scholar 

  • Almagro L, Carbonell-Bejerano P, Belchí-Navarro S, Bru R, Martínez-Zapater JM, Lijavetzky D, Pedreño MA (2014a) Dissecting the transcriptional response to elicitors in Vitis vinifera cells. PLoS ONE 9(10):e109777

    PubMed  PubMed Central  Google Scholar 

  • Almagro L, Gutierrez J, Pedreño MA, Sottomayor M (2014b) Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell Tiss Org 119:543–551

    CAS  Google Scholar 

  • Almagro L, García-Pérez P, Belchí-Navarro S, Sánchez-Pujante PJ, Pedreño MA (2016) New strategies for the use of Linum usitatissimum cell factories for the production of bioactive compounds. Plant Physiol Biochem 99:73–78

    PubMed  CAS  Google Scholar 

  • Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gandara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640

    CAS  Google Scholar 

  • Atwood JL, Davies JED, Macnicol DD, Vogtle F (1996) Cyclodextrins. Compr Supramol Chem Cyclodext 3:6–32

    Google Scholar 

  • Belchí-Navarro S, Pedreño MA, Corchete P (2011) Methyl jasmonate increases silymarin production in Silybum marianum (L.) Gaernt cell cultures treated with β-cyclodextrins. Biotechnol Lett 33:179–184

    PubMed  Google Scholar 

  • Belchí-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreño MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyl jasmonate. Plant Cell Rep 31:81–89

    PubMed  Google Scholar 

  • Belchí-Navarro S, Almagro L, Sabater-Jara AB, Fernández-Pérez F, Bru R, Pedreño MA (2013) Early signaling events in grapevine cells elicited with cyclodextrins and methyl jasmonate. Plant Physiol Biochem 62:107–110

    PubMed  Google Scholar 

  • Belchí-Navarro S, Almagro L, Bru-Martinez R, Pedreño MA (2019a) Changes in the secretome of Vitis vinifera cv. Monastrell cell cultures treated with cyclodextrins and methyl jasmonate. Plant Physiol Biochem 135:520–527

    PubMed  Google Scholar 

  • Belchí-Navarro S, Rubio MA, Pedreño MA, Almagro L (2019b) Production and localization of hydrogen peroxide and nitric oxide in grapevine cells elicited with cyclodextrins and methyl jasmonate. J Plant Physiol 237:80–86

    PubMed  Google Scholar 

  • Briceño Z, Almagro L, Sabater-Jara AB, Calderón AA, Pedreño MA, Ferrer MA (2012) Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate. J Plant Physiol 169:1050–1058

    PubMed  Google Scholar 

  • Bru R, Sellés S, Casado-Vela J, Belchí-Navarro S, Pedreño MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agr Food Chem 54:65–71

    CAS  Google Scholar 

  • Carqueijeiro I, Brown S, Chung K, Dang TT, Walia M, Besseau S, Munsch T (2018) Two tabersonine 6, 7-epoxidases initiate lochnericine-derived alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 177:1473–1486

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chakraborty A, Chattopadhyay S (2008) Stimulation of menthol production in Mentha piperita cell culture. Vitro Cell Dev-Pl 44:518–525

    CAS  Google Scholar 

  • Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11:153–177

    CAS  Google Scholar 

  • Chirinos R, Betalleluz-Pallardel I, Huamán A, Arbizu C, Pedreschi R, Campos D (2009) HPLC-DAD characterization of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chem 113:1243–1251

    CAS  Google Scholar 

  • Cho KS, Lim YR, Lee K, Lee J, Lee JH, Lee IS (2017) Terpenes from forests and human health. Toxicol Res 33:97–106

    PubMed  PubMed Central  CAS  Google Scholar 

  • Connolly JD, Hill RA (1991) Hemiterpenoids. In: Dictionary of Terpenoids 1-6. Springer US

  • Corchete P, Bru R (2013) Proteome alterations monitored by DIGE analysis in Silybum marianum cell cultures elicited with methyl jasmonate and methyl β-cyclodextrin. J Proteomics 85:99–108

    PubMed  CAS  Google Scholar 

  • Cravotto G, Binello A, Baranelli E, Carraro P, Trotta F (2006) Cyclodextrins as food additives and in food processing. Curr Nutr Food Sci 2:343–350

    CAS  Google Scholar 

  • Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Pedreño MA, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 32:1157–1167

    PubMed  CAS  Google Scholar 

  • De Alwis R, Fujita K, Ashitani T, Kuroda KI (2009) Volatile and non-volatile monoterpenes produced by elicitor-stimulated Cupressus lusitanica cultured cells. J Plant Physiol 166:720–728

    PubMed  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    PubMed  CAS  Google Scholar 

  • Durante M, Caretto S, Quarta A, De Paolis A, Nisi R, Mita G (2011) β-Cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures. Appl Microbiol Biotechnol 90:1905–1913

    PubMed  CAS  Google Scholar 

  • Fojtová J, Lojková L, Kubáň V (2008) GC/MS of terpenes in walnut tree leaves after accelerated solvent extraction. J Sep Sci 31:162–168

    PubMed  Google Scholar 

  • García-Pérez P, Losada-Barreiro S, Gallego PP, Bravo-Díaz C (2019) Cyclodextrin-elicited Bryophyllum suspension cultured cells: enhancement of the production of bioactive compounds. Int J Mol Sci 20:5180–5198

    PubMed Central  Google Scholar 

  • Gentili A (2020) Cyclodextrin-based sorbents for solid phase extraction. J Chrom A 1609:460654–460672

    CAS  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–416

    PubMed  CAS  Google Scholar 

  • Gidwani B, Vyas A (2014) Synthesis, characterization, and application of epichlorohydrin-β-cyclodextrin polymer. Colloid Surface B 114:130–137

    CAS  Google Scholar 

  • Hidalgo D, Martínez-Márquez A, Cusidó R, Bru-Martínez R, Palazón J, Corchete P (2017) Silybum marianum cell cultures stably transformed with Vitis vinifera stilbene synthase accumulate t-resveratrol in the extracellular medium after elicitation with methyl jasmonate or methylated β-cyclodextrins. Eng Life Sci 17:686–694

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jaisi A, Panichayupakaranant P (2020) Enhanced plumbagin production in Plumbago indica root culture by simultaneous and sequential dual elicitations using chitosan with l-alanine and methyl-β-cyclodextrin. Bioresour Bioprocess 7(1):1–7

    Google Scholar 

  • Kashani K, Javaran MJ, Sabet MS, Moieni A (2018) Identification of rate-limiting enzymes involved in paclitaxel biosynthesis pathway affected by coronatine and methyl-β-cyclodextrin in Taxus baccata L. cell suspension cultures. DARU 26:129–142

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2:32–50

    PubMed  PubMed Central  CAS  Google Scholar 

  • Komaraiah P, Reddy GV, Reddy PS, Raghavendra AS, Ramakrishna SV, Reddanna P (2003) Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum. Biotechnol Lett 25:593–597

    PubMed  CAS  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516

    PubMed  CAS  Google Scholar 

  • Lambert C, Lemaire J, Auger H, Guilleret A, Reynaud R, Clément C, Courot E, Taidi B (2019) Optimize, modulate, and scale-up resveratrol and resveratrol dimers bioproduction in Vitis labrusca L. cell suspension from flasks to 20 l bioreactor. Plants 8:567–586

    PubMed Central  CAS  Google Scholar 

  • Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012) Remediation technologies using cyclodextrins: an overview. Environ Chem Lett 10:225–237

    CAS  Google Scholar 

  • Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyl jasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Not 1:132–139

    PubMed  PubMed Central  Google Scholar 

  • Liu YP, Liu QL, Zhang XL, Niu HY, Guan CY, Sun FK, Fu YH (2019) Bioactive monoterpene indole alkaloids from Nauclea officinalis. Bioorg Chem 83:1–5

    PubMed  CAS  Google Scholar 

  • López-Nicolás JM, Escorial Camps M, Pérez-Sánchez H, García-Carmona F (2013) Physicochemical and thermodynamic characterization of the encapsulation of methyl jasmonate by natural and modified cyclodextrins using reversed-phase high-pressure liquid chromatography. J Agric Food Chem 61:11347–11354

    PubMed  Google Scholar 

  • Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16:77–84

    PubMed  CAS  Google Scholar 

  • Martínez-Alonso A, Losada-Barreiro S, Bravo-Diaz C (2015) Encapsulation and solubilization of the antioxidants gallic acid and ethyl, propyl, and butyl gallate with β-cyclodextrin. J Mol Liq 210:143–150

    Google Scholar 

  • Martínez-Esteso MJ, Sellés-Marchart S, Vera-Urbina JC, Pedreño MA, Bru-Martinez R (2009) Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. J Proteomics 73:331–341

    PubMed  Google Scholar 

  • Martínez-Márquez A, Martínez-Esteso MJ, Vilella-Antón MT, Sellés-Marchart S, Morante-Carriel JA, Hurtado E, Palazón J, Bru-Martínez R (2017) A tau class glutathione-S-transferase is involved in trans-resveratrol transport out of grapevine cells. Front Plant Sci 8:1457–1472

    PubMed  PubMed Central  Google Scholar 

  • Miras-Moreno B, Almagro L, Pedreño MA, Sabater-Jara AB (2016) Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota. Plant Sci 250:154–164

    PubMed  CAS  Google Scholar 

  • Morales M, Bru R, Garcia-Carmona F, Barceló AR, Pedreño MA (1998) Effect of dimethyl-β-cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with shape Xylophilus ampelinus. Plant Cell Tiss Org 53:179–187

    CAS  Google Scholar 

  • Nivelle L, Hubert J, Courot E, Jeandet P, Aziz A, Nuzillard JM, Renault JH, Clément C, Martiny L, Delmas D, Tarpin M (2017) Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules 22:474–488

    PubMed Central  Google Scholar 

  • Oliva E, Mathiron D, Bertaut E, Landy D, Cailleu D, Pilard S, Djedaïni-Pilard F (2018) Physicochemical studies of resveratrol, methyl-jasmonate and cyclodextrin interactions: an approach to resveratrol bioproduction optimization. RSC Adv 8:1528–1538

    CAS  Google Scholar 

  • Parage C, Foureau E, Kellner F, Burlat V, Mahroug S, Lanoue A, Besseau S (2016) Class II cytochrome P450 reductase governs the biosynthesis of alkaloids. Plant Physiol 172:1563–1577

    PubMed  PubMed Central  CAS  Google Scholar 

  • Perassolo M, Smith ME, Giulietti AM, Talou JR (2016) Synergistic effect of methyl jasmonate and cyclodextrins on anthraquinone accumulation in cell suspension cultures of Morinda citrifolia and Rubia tinctorum. Plant Cell Tiss Org 124:319–330

    CAS  Google Scholar 

  • Pietrowska-Borek M, Czekała Ł, Belchí-Navarro S, Pedreño MA, Guranowski A (2014) Diadenosine triphosphate is a novel factor which in combination with cyclodextrins synergistically enhances the biosynthesis of trans-resveratrol in Vitis vinifera cv. Monastrell suspension cultured cells. Plant Physiol Biochem 84:271–276

    PubMed  CAS  Google Scholar 

  • Pilaisangsuree V, Somboon T, Tonglairoum P, Keawracha P, Wongsa T, Kongbangkerd A, Limmongkon A (2018) Enhancement of stilbene compounds and anti-inflammatory activity of methyl jasmonate and cyclodextrin elicited peanut hairy root culture. Plant Cell Tiss Org 132:165–179

    CAS  Google Scholar 

  • Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90:494–507

    PubMed  Google Scholar 

  • Qian Liu Y, Yang L, Tian X (2007) Podophyllotoxin: current perspectives. Curr Bioact Compd 3:37–66

    Google Scholar 

  • Ramawat KG, Mérillon JM (2013) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes (1541–2662). Springer, Heidelberg

    Google Scholar 

  • Ramirez-Estrada K, Osuna L, Moyano E, Bonfill M, Tapia N, Cusido RM, Palazón J (2015) Changes in gene transcription and taxane production in elicited cell cultures of Taxus × media and Taxus globosa. Phytochemistry 117:174–184

    PubMed  CAS  Google Scholar 

  • Ramírez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazón J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182–206

    PubMed  PubMed Central  Google Scholar 

  • Randhir R, Lin YT, Shetty K, Lin YT (2004) Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac J Clin Nutr 13:295–307

    PubMed  CAS  Google Scholar 

  • Rao SR, Ravishankar GA (1999) Biotransformation of isoeugenol to vanilla flavour metabolites and capsaicin in suspended and immobilized cell cultures of Capsicum frutescens: study of the influence of β-cyclodextrin and fungal elicitor. Process Biochem 35:341–348

    CAS  Google Scholar 

  • Rizzello F, De Paolis A, Durante M, Blando F, Mita G, Caretto S (2014) Enhanced production of bioactive isoprenoid compounds from cell suspension cultures of Artemisia annua L. using β-cyclodextrins. Int J Mol Sci 15:19092–19105

    PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts MF (2013) Alkaloids: biochemistry, ecology, and medicinal applications. Springer, New York

    Google Scholar 

  • Rojas TR, Sampayo CAF, Vázquez BI, Franco CM, Cepeda A (2005) Study of interferences by several metabolites from Aspergillus spp. in the detection of aflatoxigenic strains in media added with cyclodextrin. Food Control 16:445–450

    CAS  Google Scholar 

  • Sabater-Jara AB, Pedreño MA (2013) Use of β-cyclodextrins to enhance phytosterol production in cell suspension cultures of carrot (Daucus carota L.). Plant Cell Tiss Org 114:249–258

    CAS  Google Scholar 

  • Sabater-Jara AB, Almagro L, Belchí-Navarro S, Ferrer MÁ, Barceló AR, Pedreño MA (2010) Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. J Plant Physiol 167:1273–1281

    PubMed  CAS  Google Scholar 

  • Sabater-Jara AB, Almagro L, Pedreño MA (2014a) Induction of extracellular defense-related proteins in suspension cultured-cells of Daucus carota elicited with cyclodextrins and methyl jasmonate. Plant Physiol Biochem 77:133–139

    PubMed  CAS  Google Scholar 

  • Sabater-Jara AB, Onrubia M, Moyano E, Bonfill M, Palazón J, Pedreño MA, Cusidó RM (2014b) Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus × media cell cultures. Plant Biotech J 12:1075–1084

    CAS  Google Scholar 

  • Saleem M, Kim HJ, Ali MS, Lee YS (2005) An update on bioactive plant lignans. Nat Prod Rep 22:696–716

    PubMed  CAS  Google Scholar 

  • Sánchez-Pujante PJ, Miras-Moreno B, Soluyanova P, Garre V, Pedreño MA, Almagro L (2017) Production of fatty acid methyl esters and other bioactive compounds in elicited cultures of the fungus Mucor circinelloides. Mycol Prog 16:507–512

    Google Scholar 

  • Somboon T, Chayjarung P, Pilaisangsuree V, Keawracha P, Tonglairoum P, Kongbangkerd A, Wongkrajang K, Limmongkon A (2019) Methyl jasmonate and cyclodextrin-mediated defense mechanism and protective effect in response to paraquat-induced stress in peanut hairy root. Phytochemistry 163:11–22

    PubMed  CAS  Google Scholar 

  • Soto-Vaca A, Gutierrez A, Losso JN, Xu Z, Finley JW (2012) Evolution of phenolic compounds from color and flavor problems to health benefits. J Agr Food Chem 60:6658–6677

    CAS  Google Scholar 

  • Soto-Argel C, Hidalgo D, Palazon J, Corchete P (2018) Extracellular chromone derivatives in cell cultures of Pimpinella anisum. Influence of elicitation with methyl jasmonate and 2β-methyl cyclodextrins. Biotechnol Lett 40(2):413–418

    PubMed  CAS  Google Scholar 

  • Tange TO, Naesby M, Folly C, Delegrange F, Houghton-Larsen J, Carlsen S (2017) US Patent No. 9,834,800. Washington, DC: US Patent and Trademark Office

  • Tatsis EC, Carqueijeiro I, de Bernonville TD, Franke J, Dang TTT, Oudin A, Courdavault V (2017) A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun 8:1–10

    CAS  Google Scholar 

  • Tisserant LP, Aziz A, Jullian N, Jeandet P, Clément C, Courot E, Boitel-Conti M (2016) Enhanced stilbene production and excretion in Vitis vinifera cv Pinot Noir hairy root cultures. Molecules 21:1703–1720

    PubMed Central  Google Scholar 

  • Torres M, Corchete P (2016) Gene expression and flavonolignan production in fruits and cell cultures of Silybum marianum. J Plant Physiol 192:111–117

    PubMed  CAS  Google Scholar 

  • Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A, Ma QY (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE 6(6):e19881

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vidal-Limón HR, Almagro L, Moyano E, Palazón J, Pedreño MA, Cusido RM (2018) Perfluorodecalins and hexenol as inducers of secondary metabolism in Taxus media and Vitis vinifera cell cultures. Front Plant Sci 9:335–350

    PubMed  PubMed Central  Google Scholar 

  • Wang B, Dai Z, Yang XW, Liu YP, Khan A, Yang ZF, Luo XD (2018) Novel nor-monoterpenoid indole alkaloids inhibiting glioma stem cells from fruits of Alstonia scholaris. Phytomedicine 48:170–178

    PubMed  CAS  Google Scholar 

  • Woerdenbag HJ, van Uden W, Frijlink HW, Lerk CF, Pras N, Malingré TM (1990) Increased podophyllotoxin production in Podophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as a β-cyclodextrin complex. Plant Cell Rep 9:97–100

    PubMed  CAS  Google Scholar 

  • Yang T, Fang L, Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Balmaceda C, Medina-Bolivar F (2015) Enhanced production of resveratrol, piceatannol, arachidin-1, and arachidin-3 in hairy root cultures of peanut co-treated with methyl jasmonate and cyclodextrin. J Agr Food Chem 63:3942–3950

    CAS  Google Scholar 

  • Yoo ES, Choo GS, Kim SH, Woo JS, Kim HJ, Park YS, Nam JS (2019) Antitumor and apoptosis-inducing effects of piperine on human melanoma cells. Anticancer Res 39:1883–1892

    PubMed  CAS  Google Scholar 

  • Zamboni A, Vrhovsek U, Kassemeyer HH, Mattivi F, Velasco R (2006) Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 45:63–68

    CAS  Google Scholar 

  • Zamboni A, Gatto P, Cestaro A, Pilati S, Viola R, Mattivi F, Moser C, Velasco R (2009) Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genom 10:363–376

    Google Scholar 

  • Zare-Hassani E, Motafakkerazad R, Razeghi J, Kosari-Nasab M (2019) The effects of methyl jasmonate and salicylic acid on the production of secondary metabolites in organ culture of Ziziphora persica. Plant Cell Tiss Org 138:437–444

    CAS  Google Scholar 

  • Zhang Y, Goto M, Oda A, Hsu PL, Guo LL, Fu YH, Hao XJ (2019) Antiproliferative aspidosperma-type monoterpenoid indole alkaloids from Bousigonia mekongensis inhibit tubulin polymerization. Molecules 24:1256–1266

    PubMed Central  Google Scholar 

  • Zhou P, Yang J, Zhu J, He S, Zhang W, Yu R, Huang X (2015) Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Appl Microbiol Biotechnol 99:7035–7045

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Economía y Competitividad (BIO2017-82374-R) and Fundación Seneca-Agencia de Ciencia y Tecnología de la Región de Murcia (19876/GERM/15).

Authors’ contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Lorena Almagro and Maria Angeles Pedreño. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Almagro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almagro, L., Pedreño, M.Á. Use of cyclodextrins to improve the production of plant bioactive compounds. Phytochem Rev 19, 1061–1080 (2020). https://doi.org/10.1007/s11101-020-09704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09704-6

Keywords

Navigation