Skip to main content
Log in

A randomized heuristic repair for the multidimensional knapsack problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The multidimensional knapsack problem (MKP) is an NP-hard combinatorial optimization problem whose solution consists of determining a subset of items of the maximum total profit that does not violate capacity constraints. Due to its hardness, large-scale MKP instances are usually a target for metaheuristics, a context in which effective feasibility maintenance strategies are crucial. In 1998, Chu and Beasley proposed an effective heuristic repair that is still relevant for recent metaheuristics. However, due to its deterministic nature, the diversity of solutions such heuristic provides is not sufficient for long runs. As a result, the search ceases to find new solutions after a while. This paper evaluates the use of efficiency groups to define a randomization strategy for the heuristic repair that increases the variability of the repaired solutions, without deteriorating quality and improves the overall results. We compared our randomized heuristic repair against the original one in 270 or-library instances, with improvements at the running time and solution quality found for many of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

  2. Scaled to the [0, 1] interval.

  3. https://gitlab.com/jeanpm/mkp-egroups.

  4. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html.

References

  1. Azad, M.A.K., Rocha, A.M.A., Fernandes, E.M.: Improved binary artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems. Swarm Evolut. Comput. 14, 66–75 (2014). https://doi.org/10.1016/j.swevo.2013.09.002

    Article  Google Scholar 

  2. Chih, M., Lin, C.J., Chern, M.S., Ou, T.Y.: Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem. Appl. Math. Model. 38(4), 1338–1350 (2014). https://doi.org/10.1016/j.apm.2013.08.009

    Article  MathSciNet  MATH  Google Scholar 

  3. Chu, P., Beasley, J.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4, 63–86 (1998). https://doi.org/10.1023/A:1009642405419

    Article  MATH  Google Scholar 

  4. Freville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155(1), 1–21 (2004). https://doi.org/10.1016/S0377-2217(03)00274-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldberg, D.: Genetic algorithms and Walsh functions: part I, a gentle introduction. Complex Syst. 3(2), 129–152 (1989)

    MATH  Google Scholar 

  6. Gottlieb, J.: Permutation-based evolutionary algorithms for multidimensional knapsack problems. In: Proceedings of the 2000 ACM Symposium on Applied Computing—Volume 1, SAC ’00, pp. 408–414. ACM (2000). https://doi.org/10.1145/335603.335866

  7. Gottlieb, J.: On the feasibility problem of penalty-based evolutionary algorithms for knapsack problems. In: Applications of Evolutionary Computing, Lecture Notes in Computer Science, vol. 2037, pp. 50–59. Springer, Berlin (2001). https://doi.org/10.1007/3-540-45365-2_6

  8. Kong, M., Tian, P., Kao, Y.: A new ant colony optimization algorithm for the multidimensional knapsack problem. Comput. Oper. Res. 35(8), 2672–2683 (2008). https://doi.org/10.1016/j.cor.2006.12.029

    Article  MathSciNet  MATH  Google Scholar 

  9. Kulik, A., Shachnai, H.: There is no EPTAS for two-dimensional knapsack. Inf. Process. Lett. 110(16), 707–710 (2010). https://doi.org/10.1016/j.ipl.2010.05.031

    Article  MathSciNet  MATH  Google Scholar 

  10. Lai, X., Hao, J.K., Glover, F., Lu, Z.: A two-phase tabu-evolutionary algorithm for the 0–1 multidimensional knapsack problem. Inf. Sci. 436–437, 282–301 (2018). https://doi.org/10.1016/j.ins.2018.01.026

    Article  MathSciNet  MATH  Google Scholar 

  11. Mansini, R., Speranza, M.G.: Coral: an exact algorithm for the multidimensional knapsack problem. INFORMS J. Comput. 24(3), 399–415 (2012). https://doi.org/10.1287/ijoc.1110.0460

    Article  MathSciNet  MATH  Google Scholar 

  12. Martins, J.P., Bringel Neto, C., Crocomo, M.K., Vittori, K., Delbem, A.C.B.: A comparison of linkage-learning-based genetic algorithms in multidimensional knapsack problems. In: IEEE Congress on Evolutionary Computation , CEC’2013, vol. 1, pp. 502–509 (2013). https://doi.org/10.1109/CEC.2013.6557610

  13. Martins, J.P., Delbem, A.C.: Pairwise independence and its impact on estimation of distribution algorithms. Swarm Evolut. Comput. 27, 80–96 (2016). https://doi.org/10.1016/j.swevo.2015.10.001

    Article  Google Scholar 

  14. Martins, J.P., Delbem, A.C.: Reproductive bias, linkage learning and diversity preservation in bi-objective evolutionary optimization. Swarm Evolut. Comput. 48, 145–155 (2019). https://doi.org/10.1016/j.swevo.2019.04.005

    Article  Google Scholar 

  15. Martins, J.P., Delbem, A.C.B.: The influence of linkage-learning in the linkage-tree GA when solving multidimensional knapsack problems. In: Proceeding of the Conference on Genetic and Evolutionary Computation, GECCO ’13, pp. 821–828. ACM (2013). https://doi.org/10.1145/2463372.2463476

  16. Martins, J.P., Fonseca, C.M., Delbem, A.C.: On the performance of linkage-tree genetic algorithms for the multidimensional knapsack problem. Neurocomputing 146, 17–29 (2014). https://doi.org/10.1016/j.neucom.2014.04.069. Bridging Machine Learning and Evolutionary Computation (BMLEC) Computational Collective Intelligence

  17. Martins, J.P., Longo, H., Delbem, A.C.: On the effectiveness of genetic algorithms for the multidimensional knapsack problem. In: Proceedings of the Companion of Genetic and Evolutionary Computation, GECCO Comp ’14, pp. 73–74. ACM (2014). https://doi.org/10.1145/2598394.2598477

  18. Puchinger, J., Raidl, G.R., Pferschy, U.: The multidimensional knapsack problem: structure and algorithms. INFORMS J. Comput. 22(2), 250–265 (2010)

    Article  MathSciNet  Google Scholar 

  19. Tavares, J., Pereira, F., Costa, E.: The role of representation on the multidimensional knapsack problem by means of fitness landscape analysis. In: IEEE Congress on Evolutionary Computation, CEC’2006, pp. 2307–2314 (2006). https://doi.org/10.1109/CEC.2006.1688593

  20. Tavares, J., Pereira, F., Costa, E.: Multidimensional knapsack problem: a fitness landscape analysis. IEEE Trans. Syst. Man Cybern. B Cybern. 38(3), 604–616 (2008). https://doi.org/10.1109/TSMCB.2008.915539

    Article  Google Scholar 

  21. Wang, L., Fu, X., Mao, Y., Menhas, M.I., Fei, M.: A novel modified binary differential evolution algorithm and its applications. Neurocomputing 98(0), 55–75 (2012). https://doi.org/10.1016/j.neucom.2011.11.033. Bio-inspired computing and applications (LSMS-ICSEE ’ 2010)

  22. Wang, L., Wang, S.Y., Xu, Y.: An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem. Expert Syst. Appl. 39(5), 5593–5599 (2012). https://doi.org/10.1016/j.eswa.2011.11.058

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean P. Martins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, J.P., Ribas, B.C. A randomized heuristic repair for the multidimensional knapsack problem. Optim Lett 15, 337–355 (2021). https://doi.org/10.1007/s11590-020-01611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01611-1

Keywords

Navigation