Skip to main content
Log in

Levulinic acid production through two-step acidic and thermal treatment of food waste using dilute hydrochloric acid

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This research investigated the concept of a two-step acidic and thermal treatment for glucose extraction and levulinic acid (LA) production from food waste using dilute hydrochloric acid (DHA) as a catalyst, and subsequently analyzed the properties of the resulting humins. Glucose extraction was performed under various reaction conditions (reaction temperature range: 120-190 °C, DHA concentration range: 0.2-0.5% v/v); the glucose extraction yield of the acidic treatment step reached 83.17% under the optimal conditions (150 °C in 0.5% DHA). LA production was achieved during the thermal treatment step, which was investigated using two independent experiments to determine the influence of the reaction conditions (reaction time: 5-140min, concentration factor: 1.5-3.0, reaction temperature: 160-190 °C). The LA production process was affected by the concentration factor and the reaction temperature due to the low pH of solution and the rapid reaction rate, respectively. The thermal stability of the humins was highest at a concentration factor of 3.0 because of the 13.07 C/H ratio of the humins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Baugh and P. L. McCarty, Biotechnol. Bioeng., 31, 50 (1988).

    CAS  PubMed  Google Scholar 

  2. K. R. Bräutigam, J. Jörissen and C. Priefer, Waste Manage. Res., 32, 683 (2014).

    Google Scholar 

  3. A. Caretto and A. Perosa, ACS Sustainable Chem. Eng., 1, 989 (2013).

    CAS  Google Scholar 

  4. F. Cherubini, Energy Convers. Manag., 51, 1412 (2010).

    CAS  Google Scholar 

  5. S. P. Das, R. Ravindran, S. Ahmed, D. Das, D. Goyal, C. M. Fontes and A. Goyal, Appl. Biochem. Biotechnol., 167, 1475 (2012).

    CAS  PubMed  Google Scholar 

  6. J. Esteban and M. Ladero, Int. J. Food Sci. Technol., 53, 1095 (2018).

    CAS  Google Scholar 

  7. S. W. Fitzpatrick, ACS Symp. Ser., 921, 271 (2006).

    CAS  Google Scholar 

  8. S. S. Chen, T. Maneerung, D. C. Tsang, Y. S. Ok and C. H. Wang, Chem. Eng. J., 328, 246 (2017).

    CAS  Google Scholar 

  9. B. Girisuta, L.P. B. H. Janssen and H. J. Heeres, Chem. Eng. Res. Des., 84, 339 (2006).

    CAS  Google Scholar 

  10. M. Goto, R. Obuchi, T. Hirose, T. Sakaki and M. Shibata, Bioresour. Technol., 93, 279 (2004).

    CAS  PubMed  Google Scholar 

  11. D. J. Hayes, S. Fitzpatrick, M. H. Hayes and J. R. Ross, Biorefineries: Ind. Processes Prod., 1, 139 (2006).

    CAS  Google Scholar 

  12. J. Heltzel, S. K. Patil and C. R. Lund, Humin formation pathways, in Reaction pathways and mechanisms in thermocatalytic biomass conversion II, Springer, Singapore, 105 (2016).

    Google Scholar 

  13. J. Horvat, B. Klaic, B. Metelko and V. Šunjic, Croat. Chemica. Acta, 59, 429 (1986).

    CAS  Google Scholar 

  14. I. T. Horváth, H. Mehdi, V. Fábos, L. Boda and L. T. Mika, Green Chem., 10, 238 (2008).

    Google Scholar 

  15. H. Jeong, S. K. Jang, C. Y. Hong, S. H. Kim, S. Y. Lee, S. M. Lee and I. G. Choi, Bioresour. Technol., 225, 183 (2017).

    CAS  PubMed  Google Scholar 

  16. H. Ji, C. Dong, G. Yang and Z. Pang, BioResources, 14, 725 (2019).

    CAS  Google Scholar 

  17. S. J. Kim, H. S. Kwon, G. H. Kim and B. H. Um, Ind. Crops Prod., 67, 395 (2015).

    CAS  Google Scholar 

  18. Y. S. Kim, J. Y. Jang, S. J. Park and B. H. Um, Waste Manage., 74, 231 (2018).

    CAS  Google Scholar 

  19. X. Li, R. Xu, J. Yang, S. Nie, D. Liu, Y. Liu and C. Si, Ind. Crops Prod., 130, 184 (2019).

    CAS  Google Scholar 

  20. M. R. Park, H. S. Kim, S. K. Kim and G. T. Jeong, Fuel Process. Technol., 172, 115 (2018).

    CAS  Google Scholar 

  21. S. K. Patil and C. R. Lund, Energy Fuels, 25, 4745 (2011).

    CAS  Google Scholar 

  22. S. K. Patil, J. Heltzel and C. R. Lund, Energy Fuels, 26, 5281 (2012).

    CAS  Google Scholar 

  23. F. D. Pileidis and M. M. Titirici, ChemSusChem, 9, 562 (2016).

    CAS  PubMed  Google Scholar 

  24. D. W. Rackemann and W. O. Doherty, Biofuels, Bioprod. Biorefin., 5, 198 (2011).

    CAS  Google Scholar 

  25. D. W. Rackemann, J. P. Bartley and W. O. Doherty, Ind. Crops Prod., 52, 46 (2014).

    CAS  Google Scholar 

  26. C. Gong, J. Wei, X. Tang, X. Zeng, Y. Sun and L. Lin, Korean J. Chem. Eng., 36, 740 (2019).

    CAS  Google Scholar 

  27. H. Rasmussen, H. R. Sørensen and A. S. Meyer, Carbohydr. Res., 385, 45 (2014).

    CAS  PubMed  Google Scholar 

  28. R. Ravindran and A. K. Jaiswal, Trends Biotechnol., 34, 58 (2016).

    CAS  PubMed  Google Scholar 

  29. T. H. Kim, Y. J. Jeong, K. K. Oh and T. H. Kim, Korean J. Chem. Eng., 30, 1339 (2013).

    CAS  Google Scholar 

  30. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter and D. Templeton, NREL/TP-510-42623, National Renewable Energy Lab, Golden, CO, USA (2006).

    Google Scholar 

  31. A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter and D. Templeton, NREL/TP-510-42619, National Renewable Energy Lab, Golden, CO, USA (2008).

    Google Scholar 

  32. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter and D. Templeton, NREL/TP-510-42622, National Renewable Energy Lab, Golden, CO, USA (2008).

    Google Scholar 

  33. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker, NREL/TP-510-42618, National Renewable Energy Lab, Golden, CO, USA (2010).

    Google Scholar 

  34. I. V. Sumerskii, S. M. Krutov and M. Y. Zarubin, Russ. J. Appl. Chem., 83, 320 (2010).

    CAS  Google Scholar 

  35. J. Trivedi, A. K. Bhonsle and N. Atray, Academic Press., 19, 427 (2020).

    Google Scholar 

  36. S. Tulaphol, M. A. Hossain, M. S. Rahaman, L. Y. Liu, T. K. Phung, S. Renneckar and N. Sathitsuksanoh, Energy Fuels, 34, 1764 (2019).

    Google Scholar 

  37. G. Tsilomelekis, M. J. Orella, Z. Lin, Z. Cheng, W. Zheng, V. Nikolakis and D. G. Vlachos, Green Chem., 18, 1983 (2016).

    CAS  Google Scholar 

  38. B. H. Um, M. N. Karim and L. L. Henk, Appl. Biochem. Biotechnol., 105, 115 (2003).

    PubMed  Google Scholar 

  39. B. H. Um and G. P. van Walsum, Appl. Biochem. Biotechnol., 168, 406 (2012).

    CAS  PubMed  Google Scholar 

  40. R. J. Van Putten, J. C. Van Der Waal, E. D. De Jong, C. B. Rasrendra, H. J. Heeres and J. G. de Vries, Chem. Rev., 113, 1499 (2013).

    CAS  PubMed  Google Scholar 

  41. R. Weingarten, J. Cho, W. C. Conner Jr. and G. W. Huber, Green Chem., 12, 1423 (2010).

    CAS  Google Scholar 

  42. R. Weingarten, J. Cho, R. Xing, W. C. Conner and G. W. Huber, ChemSusChem., 5, 1280 (2012).

    CAS  PubMed  Google Scholar 

  43. R. Weingarten, W. C. Conner and G. W. Huber, Energy Environ. Sci., 5, 7559 (2012).

    CAS  Google Scholar 

  44. T. Werpy and G. Petersen, NREL/TP-510-35523, National Renewable Energy Lab, Golden, CO, USA (2004).

    Google Scholar 

  45. R. Xing, W. Qi and G. W. Huber, Energy Environ. Sci., 4, 2193 (2011).

    CAS  Google Scholar 

  46. K. Yan, C. Jarvis, J. Gu and Y. Yan, Renew. Sust. Energy Rev., 51, 986 (2015).

    CAS  Google Scholar 

  47. Z. Yang, H. Kang, Y. Guo, G. Zhuang, Z. Bai, H. Zhang and Y. Dong, Ind. Crops Prod., 46, 205 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Hwan Um.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, J.S., Um, B.H. Levulinic acid production through two-step acidic and thermal treatment of food waste using dilute hydrochloric acid. Korean J. Chem. Eng. 37, 1149–1156 (2020). https://doi.org/10.1007/s11814-020-0521-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0521-6

Keywords

Navigation