Skip to main content
Log in

Feasibility of as-prepared reticulated porous barium titanate without additional radar-absorbing material coating in potential military applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

For decades, porous ceramics have received much scientific and industrial interests because they possess better thermal and chemical stabilities than their counterparts, including porous polymers and porous metals. Among the numerous kinds of porous ceramics, reticulated porous ceramics have recently been prepared for various application fields. However, as far as the authors’ knowledge, the radar-absorbing properties of reticulated porous ceramics remain largely unknown, until now. Therefore, the feasibility of reticulated porous ceramics prepared using barium titanate, which has an inherently high dielectric constant, as a potential platform that could be used without additional radar-absorbing material coating has been discussed. From the results obtained in this study, it was discussed whether reticulated porous barium titanate could be fabricated with an acceptable mechanical strength and radar-absorbing properties. Quantitatively, the measured reflection loss (RL) of the 2.08-mm-thick reticulated porous barium titanate, approached − 16 dB (97.49% absorption of the radar wave) at 9.2 GHz. Meanwhile, the calculated RL of the as-prepared 2.50-mm-thick reticulated porous barium titanate approached − 21 dB (99.21% absorption of the radar wave) at 9.2 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J.: Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 89(6), 1771–1789 (2006)

    Article  CAS  Google Scholar 

  2. Gonzenbach, U.T., Studart, A.R., Steinlin, D., Tervoort, E., Gauckler, L.J.: Processing of particle-stabilized wet foams into porous ceramics. J. Am. Ceram. Soc. 90(11), 3407–3414 (2007)

    Article  CAS  Google Scholar 

  3. Voigt, C., Zienert, T., Schubert, P., Aneziris, C.G., Hubálková, J.: Reticulated porous foam ceramics with different surface chemistries. J. Am. Ceram. Soc. 97(7), 2046–2053 (2014)

    Article  CAS  Google Scholar 

  4. Yue, H., Wang, X., Tian, J.: Fabrication of Si3N4 reticulated porous ceramics reinforced by needle-like β-Si3N4. Ceram. Int. 40(6), 8525–8532 (2014)

    Article  CAS  Google Scholar 

  5. Liang, X., Li, Y., Liu, J., Sang, S., Chen, Y., Li, B., Aneziris, C.G.: Improvement of the mechanical properties of SiC reticulated porous ceramics with optimized three-layered struts for porous media combustion. Ceram. Int. 43(4), 3741–3747 (2017)

    Article  CAS  Google Scholar 

  6. Voigt, C., Jäckel, E., Aneziris, C.G., Hubálková, J.: Investigations of reticulated porous alumina foam ceramics based on different coating techniques with the aid of μCT and statistical characteristics. Ceram. Int. 39(3), 2415–2422 (2013)

    Article  CAS  Google Scholar 

  7. Betke, U., Lieb, A., Scheffler, F., Scheffler, M.: Manufacturing of reticulated open-cellular aluminum nitride ceramic foams from aqueous AlN suspensions. Adv. Eng. Mater. 19(3), 1600660 (2016)

    Article  Google Scholar 

  8. Zhu, X., Jiang, D., Tan, S., Zhang, Z.: Improvement in the strut thickness of reticulated porous ceramics. J. Am. Ceram. Soc. 84(7), 1654–1656 (2001)

    Article  CAS  Google Scholar 

  9. Pu, X., Liu, X., Qiu, F., Huang, L.: Novel method to optimize the structure of reticulated porous ceramics. J. Am. Ceram. Soc. 87(7), 1392–1394 (2004)

    Article  CAS  Google Scholar 

  10. Fey, T., Betke, U., Rannabauer, S., Scheffler, M.: Reticulated replica ceramic foams: processing, functionalization, and characterization. Adv. Eng. Mater. 19(10), 1700369 (2017)

  11. Bueno, A.R., Gregori, M.L., Nóbrega, M.C.S.: Microwave-absorbing properties of Ni0.50–xZn0.50−xMe2xFe2O4 (Me=Cu, Mn, Mg) ferrite–wax composite in X-band frequencies. J. Magn. Magn. Mater. 320(6), 864–870 (2008)

    Article  CAS  Google Scholar 

  12. Qiu, X., Wang, L., Zhu, H., Guan, Y., Zhang, Q.: Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale. 9(22), 7408–7418 (2017)

    Article  CAS  Google Scholar 

  13. Ha, J.-H., Lee, S., Choi, J.R., Lee, J., Song, I.-H., Lee, S.J., Choi, J.: Development of a carbon-coated reticulated porous alumina material with tailored structural properties for potential radar-absorption applications. Ceram. Int. 43(18), 16924–16930 (2017)

    Article  CAS  Google Scholar 

  14. Ha, J.-H., Lee, S., Choi, J.R., Lee, J., Song, I.-H., Chung, T.-J.: A cobalt-coated reticulated porous alumina for radar-absorption applications. J. Aust. Ceram. Soc. 55(3), 883–891 (2019)

    Article  CAS  Google Scholar 

  15. Ma, M., Wang, Y., Navarro-Cía, M., Liu, F., Zhang, F., Liu, Z., Li, Y., Hanham, S.M., Hao, Z.: The dielectric properties of some ceramic substrate materials at terahertz frequencies. J. Eur. Ceram. Soc. 39(14), 4424–4428 (2019)

    Article  CAS  Google Scholar 

  16. Zhang, B., Ma, J., Ye, J., Jin, Y., Yang, C., Ding, J., Zhang, Z., Hou, Z., Liu, Q., Ye, F.: Ultra-low cost porous mullite ceramics with excellent dielectric properties and low thermal conductivity fabricated from kaolin for radome applications. Ceram. Int. 45(15), 18865–18870 (2019)

    Article  CAS  Google Scholar 

  17. Song, N., Gu, S., Wu, Q., Li, C., Zhou, J., Zhang, P., Wang, W., Yue, M.: Facile synthesis and high-frequency performance of CoFe2O4 nanocubes with different size. J. Magn. Magn. Mater. 451, 793–798 (2018)

    Article  CAS  Google Scholar 

  18. Choi, I., Lee, D., Lee, D.G.: Radar absorbing composite structures dispersed with nano-conductive particles. Compos. Struct. 122, 23–30 (2015)

    Article  Google Scholar 

  19. Hamano, T., Towner, D.J., Wessels, B.W.: Relative dielectric constant of epitaxial BaTiO <inf>3</inf> thin films in the GHz frequency range. Appl. Phys. Lett. 83(25), 5274–5276 (2003)

    Article  CAS  Google Scholar 

  20. Li, W., Li, C., Lin, L., Wang, Y., Zhang, J.: All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material. J. Alloys Compd. 781, 883–891 (2019)

    Article  CAS  Google Scholar 

  21. Hong, K., Lee, T.H., Suh, J.M., Yoon, S.H., Jang, H.W.: Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C. 7(32), 9782–9802 (2019)

    Article  CAS  Google Scholar 

  22. Yamaguchi, H., Tatami, J., Iijima, M.: Measurement of mechanical properties of BaTiO<inf>3</inf> layer in multi-layered ceramic capacitor using a microcantilever beam specimen. J. Ceram. Soc. Jpn. 127(6), 335–338 (2019)

    Article  CAS  Google Scholar 

  23. Sebastian, T., Michalek, A., Hedayati, M., Lusiola, T., Clemens, F.: Enhancing dielectric properties of barium titanate macrofibers. J. Eur. Ceram. Soc. 39(13), 3716–3721 (2019)

    Article  CAS  Google Scholar 

  24. Jiang, B., Iocozzia, J., Zhao, L., Zhang, H., Harn, Y.W., Chen, Y., Lin, Z.: Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48(4), 1194–1228 (2019)

    Article  CAS  Google Scholar 

  25. Pasternack, R.M., Rivillon Amy, S., Chabal, Y.J.: Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature. Langmuir. 24(22), 12963–12971 (2008)

    Article  CAS  Google Scholar 

  26. Jakša, G., Štefane, B., Kovač, J.: Influence of different solvents on the morphology of APTMS-modified silicon surfaces. Appl. Surf. Sci. 315, 516–522 (2014)

    Article  Google Scholar 

  27. Tang, H., Yao, S., Shen, X., Xi, X., Xiao, K.: Lithium–sulfur batteries with high rate and cycle performance by using multilayered separators coated with Ketjen Black. Energy Technol. 5(4), 623–628 (2017)

    Article  CAS  Google Scholar 

  28. Wang, D., Shen, Y., Zhang, X., Wu, Z.: Enhanced hydrogen evolution from the MoP/C hybrid by the modification of Ketjen Black. J. Mater. Sci. 52(6), 3337–3343 (2017)

    Article  CAS  Google Scholar 

  29. Tang, H., Yao, S., Mi, J., Wu, X., Hou, J., Shen, X.: Ketjen Black/Mg0.6Ni0.4O composite coated separator for lithium-sulfur batteries with enhanced electrochemical performance. Mater. Lett. 186, 127–130 (2017)

    Article  CAS  Google Scholar 

  30. Colombo, P.: Conventional and novel processing methods for cellular ceramics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1838), 109–124 (2006)

    Article  CAS  Google Scholar 

  31. Zou, T., Wu, Y., Li, H.: Electromagnetic and microwave absorbing properties of carbon-encapsulated cobalt nanoparticles. Mater. Lett. 214, 280–282 (2018)

    Article  CAS  Google Scholar 

  32. Meng, X.M., Zhang, X.J., Lu, C., Pan, Y.F., Wang, G.S.: Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO3 + PVDF) and carbon black nanoparticles. J. Mater. Chem. A. 2(44), 18725–18730 (2014)

    Article  CAS  Google Scholar 

  33. Smitha, P., Singh, I., Najim, M., Panwar, R., Singh, D., Agarwala, V., Das Varma, G.: Development of thin broad band radar absorbing materials using nanostructured spinel ferrites. J. Mater. Sci. Mater. Electron. 27(8), 7731–7737 (2016)

    Article  CAS  Google Scholar 

  34. Du, Y., Liu, W., Qiang, R., Wang, Y., Han, X., Ma, J., Xu, P.: Shell thickness-dependent microwave absorption of core-shell Fe 3O4@C composites. ACS Appl. Mater. Interfaces. 6(15), 12997–13006 (2014)

    Article  CAS  Google Scholar 

  35. Kong, L., Yin, X., Zhang, Y., Yuan, X., Li, Q., Ye, F., Cheng, L., Zhang, L.: Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C. 117(38), 19701–19711 (2013)

    Article  CAS  Google Scholar 

  36. Vasconcelos da Silva, L., Pezzin, S.H., Cerqueira Rezende, M., Campos Amico, S.: Glass fiber/carbon nanotubes/epoxy three-component composites as radar absorbing materials. Polym. Compos. 37(8), 2277–2284 (2016)

    Article  CAS  Google Scholar 

  37. Pinto, S.S., Rezende, M.C.: Morphological, electromagnetic, and absorbing properties of POMA and PAni/carbon black composites. J. Electron. Mater. 46(8), 4939–4947 (2017)

    Article  CAS  Google Scholar 

  38. Teber, A., Unver, I., Kavas, H., Aktas, B., Bansal, R.: Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials. J. Magn. Magn. Mater. 406, 228–232 (2016)

    Article  CAS  Google Scholar 

  39. Poorbafrani, A., Kiani, E.: Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported financially by the Fundamental Research Program of the Korean Institute of Materials Science (KIMS), Grant No. PNK6780, and by the Technology Innovation Program (20003782) of the Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Hoon Ha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, JH., Lee, S., Park, B. et al. Feasibility of as-prepared reticulated porous barium titanate without additional radar-absorbing material coating in potential military applications. J Aust Ceram Soc 56, 1481–1491 (2020). https://doi.org/10.1007/s41779-020-00498-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00498-6

Keywords

Navigation