Skip to main content

Advertisement

Log in

Nrn1 Overexpression Attenuates Retinal Ganglion Cell Apoptosis, Promotes Axonal Regeneration, and Improves Visual Function Following Optic Nerve Crush in Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neuritin (Nrn1) is a small highly conserved extracellular membrane protein involved in the process of neural cell survival and differentiation, axonal and dendritic growth, and synapse formation and maturation. Previous studies have demonstrated that intravitreal injection of recombinant Nrn1 as a gene therapy could alleviate retinal ganglion cell (RGC) apoptosis and promote optic nerve axon regeneration after optic nerve crush (ONC). However, the mechanism underlying the repairing effect of Nrn1 against optic never injury remains elusive. In this study, a rAAV2-mediated Nrn1 overexpression vector (AAV2-Nrn1) was applied to treat ONC through intravitreal injection for the purpose of further exploring the effect and mechanism of Nrn1 in repairing the injured optic nerve. The results showed that AAV2-Nrn1 was mainly transfected into RGCs without affecting astrocytes. Nrn1 overexpression effectively reduced RGC apoptosis and promoted optic nerve regeneration and visual function restoration as demonstrated by retinal imaging, histopathological analysis, and physiological function detection in vivo following ONC. Immunoblot assay revealed that functional molecules of Nrn1 activated the Akt1 and Stat3 pathways and inhibited the mitochondrial apoptotic pathway. The results of the present study may provide experimental evidence for further application of Nrn1 to the clinical treatment of optic nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed Z, Kalinski H, Berry M, Almasieh M, Ashush H, Slager N, Logan A (2011) Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis 2:e173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akten B, Kye MJ, Hao le T, Wertz MH, Singh S, Nie D, Sahin M (2011) Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natil Acad Sci U S A 108:10337–10342

    CAS  Google Scholar 

  • Azuchi Y, Namekata K, Shimada T, Guo X, Kimura A, Harada C, Harada T (2018) Role of neuritin in retinal ganglion cell death in adult mice following optic nerve injury. Sci Rep 8:1–8

    CAS  Google Scholar 

  • Berkelaar M, Clarke D, Wang YC, Bray G, Aguayo A (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368–4374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bireswar L, Ben KS, Andrew DH (2017) Regenerating optic pathways from the eye to the brain. Science 356:1031–1034

    Google Scholar 

  • Burns ME, Stevens B (2018) Report on the national eye institute’s audacious goals initiative: creating a cellular environment for neuroregeneration. eNeuro 5:1–9

    Google Scholar 

  • Cantallops I, Haas K, Cline HT (2000) Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat Neurosci 3:1004–1011

    CAS  PubMed  Google Scholar 

  • Cheng L, Sapieha P, Kittlerova P, Hauswirth WW, Di Polo A (2002) TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci 22:3977–3986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chierzi S, Strettoi E, Cenni MC, Maffei L (1999) Optic nerve crush: axonal responses in wild-type and bcl-2 transgenic mice. J Neurosci 19:8367–8376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crair M, Mason C (2016) Reconnecting eye to brain. J Neurosci 36:10707–10722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crosson SM, Dib P, Smith JK, Zolotukhin S (2018) Helper-free production of laboratory grade AAV and purification by iodixanol density gradient centrifugation. Mol Ther Methods Clin Dev 10:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Kang J, Hu D, Zhou J, Wang Y (2014) Oncomodulin/truncated protamine-mediated Nogo-66 receptor small interference RNA delivery promotes axon regeneration in retinal ganglion cells. Mol Cell 37:613–619

    Google Scholar 

  • Cui J, Cui C, Cui Y, Li R, Sheng H, Jiang X, Gao J (2017) Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt pathways in intracerebral hemorrhage. Cell Physiol Biochem 42:137–144

    CAS  PubMed  Google Scholar 

  • David JC, Milos P, Melissa LC, Larry B (2017a) The challenge of regenerative therapies for the optic nerve in glaucoma. Exp Eye Res 157:28–33

    Google Scholar 

  • David T, David M, Jacky M, Patterson N, Kevin L, Richard M, Caprioli J (2017b) Optic nerve regeneration after crush remodels the injury site: molecular insights from imaging mass spectrometry. Vis sci 59:212–222

    Google Scholar 

  • DeBusk A, Moster ML (2018) Gene therapy in optic nerve disease. Curr Opin Ophthalmol 29:234–238

    PubMed  Google Scholar 

  • Di Giovanni S, Faden AI, Yakovlev A, Duke-Cohan JS, Finn T, Thouin M, Hoffman EP (2005) Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. FASEB J 19:153–154

    PubMed  Google Scholar 

  • Dinculescu A, Glushakova L, Min SH, Hauswirth WW (2005) Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Therapy 16:649–663

    CAS  Google Scholar 

  • Dvoriantchikova G, Pappas S, Luo X, Ribeiro M, Danek D, Pelaez D, Ivanov D (2016) Virally delivered, constitutively active NFkappaB improves survival of injured retinal ganglion cells. Eur J Neurosci 44:2935–2943

    PubMed  PubMed Central  Google Scholar 

  • Fischer D, Harvey AR, Pernet V, Lemmon VP, Park KK (2017) Optic nerve regeneration in mammals: regenerated or spared axons? Exp Neurol 296:83–88

    PubMed  PubMed Central  Google Scholar 

  • Fujino T, Leslie JH, Eavri R, Chen JL, Lin WC, Flanders GH, Nedivi E (2011) CPG15 regulates synapse stability in the developing and adult brain. Genes Dev 25:2674–2685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldenberg N, Dratviman O, Dadon S, Cheporko Y, Hochhauser E (2011) Protective effect of Bax ablation against cell loss in the retinal ganglion layer induced by optic nerve crush in transgenic mice. J Neuroophthalmol 31:331–338

    Google Scholar 

  • Han Y, Chen X, Shi F, Li S, Huang J, Xie M, Xu P (2007) CPG15, a new factor upregulated after ischemic brain injury, contributes to neuronal network re-establishment after glutamate-induced injury. J Neurotrauma 24:722–731

    PubMed  Google Scholar 

  • Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Cui Q (2006) Gene therapy and transplantation in CNS repair: the visual system. Prog Retin Eye Res 25:449–489

    CAS  PubMed  Google Scholar 

  • Holahan MR (2017) A shift from a pivotal to supporting role for the growth-associated protein (GAP-43) in the coordination of axonal structural and functional plasticity. Front Cell Neurosci 11(9):1–19

    Google Scholar 

  • Hu Y, Leaver SG, Plant GW, Hendriks WT, Niclou SP, Verhaagen J, Cui Q (2005) Lentiviral-mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol Ther 11:906–915

    CAS  PubMed  Google Scholar 

  • Huang C, Cen LP, Liu L, Leaver SG, Harvey AR, Cui Q, Zhang M (2013) Adeno-associated virus-mediated expression of growth-associated protein-43 aggravates retinal ganglion cell death in experimental chronic glaucomatous injury. Mol Vis 19:1422–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang TL, Wen YT, Chang CH, Chang SW, Lin KH and Tsai RK: Efficacy of intravitreal injections of triamcinolone acetonide in a rodent model of nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 57: 1878–1884, 2016

  • Ip NY, McClain J, Barrezueta NX, Aldrich TH, Pan L, Li Y, Yancopoulos GD (1993) The alpha component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron 10:89–102

    CAS  PubMed  Google Scholar 

  • Javaherian A, Cline HT (2005) Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron 45:505–512

    CAS  PubMed  Google Scholar 

  • Karamoysoyli E, Burnand RC, Tomlinson DR, Gardiner NJ (2008) Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy. Diabetes 57:181–189

    CAS  PubMed  Google Scholar 

  • Keeler AM, ElMallah MK, Flotte TR (2017) Gene therapy 2017: progress and future directions. Clin Transl Sci 10:242–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kermer P, Klocker N, Bahr M (1999) Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res 298:383–395

    CAS  PubMed  Google Scholar 

  • Kleinridders A, Ferris HA, Cai W, Kahn CR (2014) Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63:2232–2243

    PubMed  PubMed Central  Google Scholar 

  • Krueger A, Baumann S, Krammer PH, Kirchhoff S (2001) FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 21:8247–8254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacoba M, Alarcon C, Rosa EJ, Pablo F (1999) Insulin/insulin-like growth factor-I hybrid receptors with high affinity for insulin are developmentally regulated during neurogenesis. Endocrinology 140:233–243

    CAS  Google Scholar 

  • Leaver SG, Cui Q, Bernard O, Harvey AR (2006a) Cooperative effects of bcl-2 and AAV-mediated expression of CNTF on retinal ganglion cell survival and axonal regeneration in adult transgenic mice. Eur J Neurosci 24:3323–3332

    PubMed  Google Scholar 

  • Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J, Harvey AR (2006b) AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 13:1328–1341

    CAS  PubMed  Google Scholar 

  • Li Y, Sauve Y, Li D, Lund RD, Raisman G (2003) Transplanted olfactory ensheathing cells promote regeneration of cut adult rat optic nerve axons. J Neurosci 23:7783–7788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li D, Raisman G (2007) Transplanted schwann cells, not olfactory ensheathing cells, myelinate optic nerve fibres. Glia 55:312–316

    PubMed  Google Scholar 

  • Lingor P, Tonges L, Pieper N, Bermel C, Barski E, Planchamp V, Bahr M (2008) ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain 250-263

  • Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantilla CB (2017) Gene therapy and respiratory neuroplasticity. Exp Neurol 287:261–267

    CAS  PubMed  Google Scholar 

  • Marron TU, Guerini V, Rusmini P, Sau D, Brevini TA, Martini L, Poletti A (2005) Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones. J Neurochem 92:10–20

    CAS  PubMed  Google Scholar 

  • Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602:304–317

    CAS  PubMed  Google Scholar 

  • Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y, Theill LE (1997) Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc Natl Acad Sci U S A 94:2648–2653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Natik P, Jacky M, Gu L, Caprioli J (2016) Heat shock proteins in the retina: focus on HSP70 and alpha crystallins in ganglion cell survival. Prog Retin Eye Res 52:22–46

    Google Scholar 

  • Nedivi E, Wu GY, Cline HT (1998) Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281:1863–1866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negishi H, Dezawa M, Oshitari T, Adachi E (2001) Optic nerve regeneration within artificial Schwann cell graft in the adult rat. Brain Res Bull 55:409–419

    CAS  PubMed  Google Scholar 

  • Nuschke AC, Farrell SR, Levesque JM, Chauhan BC (2015) Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: axon transport, injury and soma loss. Exp Eye Res 141:111–124

    CAS  PubMed  Google Scholar 

  • Park KK, Liu K, Hu Y, Kanter JL, He Z (2010) PTEN/mTOR and axon regeneration. Exp Neurol 223:45–50

    CAS  PubMed  Google Scholar 

  • Pernet V, Joly S, Jordi N, Dalkara D, Kornacka A, Flannery JG, Schwab ME (2013a) Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death Dis 4:e734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pernet V, Joly S, Dalkara D, Jordi N, Schwarz O, Christ F, Schwab ME (2013b) Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve. Neurobiol Dis 51:202–213

    CAS  PubMed  Google Scholar 

  • Putz U, Harwell C, Nedivi E (2005) Soluble CPG15 expressed during early development rescues cortical progenitors from apoptosis. Nat Neurosci 8:322–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajala RV, Ivanovic I, Dilly AK (2009) Retinal insulin receptor signaling in hyperosmotic stress. Vitam Horm 80:583–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas VT, Costa MR (2017) Gene manipulation strategies to identify molecular regulators of axon regeneration in the central nervous system. Front Cell Neurosci 11:1–18

    Google Scholar 

  • Rickhag M, Teilum M, Wieloch T (2007) Rapid and long-term induction of effector immediate early genes (BDNF, Neuritin and Arc) in peri-infarct cortex and dentate gyrus after ischemic injury in rat brain. Brain Res 1151:203–210

    CAS  PubMed  Google Scholar 

  • Sapieha PS, Peltier M, Rendahl KG, Manning WC, Di Polo A (2003) Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci 24:656–672

    CAS  PubMed  Google Scholar 

  • Sato H, Fukutani Y, Yamamoto Y, Tatara E, Takemoto M, Shimamura K, Yamamoto N (2012) Thalamus-derived molecules promote survival and dendritic growth of developing cortical neurons. J Neurosci 32:15388–15402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D (1992) Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13:387–414

    CAS  PubMed  Google Scholar 

  • Sharma TP, Liu Y, Wordinger RJ, Pang IH, Clark AF (2015) Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis 6:1–13

    CAS  Google Scholar 

  • Shevtsova Z, Malik I, Garrido M, Scholl U, Bahr M, Kugler S (2006) Potentiation of in vivo neuroprotection by BclX(L) and GDNF co-expression depends on post-lesion time in deafferentiated CNS neurons. Gene Ther 13:1569–1578

    CAS  PubMed  Google Scholar 

  • Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, He Z (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64:617–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stankowska DL, Minton AZ, Rutledge MA, Mueller BH, Phatak NR, He S, Krishnamoorthy RR (2015) Neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Invest Ophthalmol Vis Sci 56:893–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffi D, Abbot F, Colleen M (2016) Central nervous system: re-establishing lost connetions. Nat Neurosci 19:234–238

    Google Scholar 

  • Surgucheva I, Weisman AD, Goldberg JL, Shnyra A, Surguchov A (2008) Gamma-Synuclein as a marker of retinal ganglion cells. Mol Vis 14:1540–1548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan JY, Vance KW, Varela MA, Sirey T, Watson LM, Curtis HJ, Marques AC (2014) Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat Struct Mol Biol 21:955–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai RK, Chang CH, Wang HZ (2008) Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in neurodegeneration after optic nerve crush in rats. Exp Eye Res 87:242–250

    CAS  PubMed  Google Scholar 

  • Vigneswara V, Akpan N, Berry M, Logan A, Troy CM, Ahmed Z (2014) Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signaling. Brain 6:1656–1675

    Google Scholar 

  • Villegas MP, Vidal M, Bray GM, Aguayo AJ (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J Neurosci 8:265–280

    Google Scholar 

  • Wang H, Li X, Shan L, Zhu J, Chen R, Li Y, Huang J (2016) Recombinant hNeuritin promotes structural and functional recovery of sciatic nerve injury in rats. Front Neurosci 11:1–12

    Google Scholar 

  • Yao JJ, Gao XF, Chow CW, Zhan XQ, Hu CL, Mei YA (2012) Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K+ current in rat cerebellar granule neurons. J Biol Chem 287:41534–41545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao JJ, Zhao QR, Liu DD, Chow CW, Mei YA (2016) Neuritin up-regulates Kv4.2 alpha-subunit of potassium channel expression and affects neuronal excitability by regulating the calcium-calcineurin-NFATc4 signaling pathway. J Biol Chem 291:17369–17381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zong CS, Hermanto U, Lopez-Bergami P, Ronai Z, Wang LH (2006) RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol Cell Biochem 26:413–424

    CAS  Google Scholar 

Download references

Funding

This present study was supported by the National Natural Science Foundation of China under award number 31271282.

Author information

Authors and Affiliations

Authors

Contributions

JX designed this study. TH and HL acquired the data and wrote a draft of the manuscript; TH, SZ, and HL prepared the experiment materials and performed the animal experiment and in vivo assays; FL and DW interpreted data, performed the statistical analysis, and analyzed the results; JX revised the manuscript. All the authors approved and read final manuscript.

Corresponding author

Correspondence to Jiajun Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Li, H., Zhang, S. et al. Nrn1 Overexpression Attenuates Retinal Ganglion Cell Apoptosis, Promotes Axonal Regeneration, and Improves Visual Function Following Optic Nerve Crush in Rats. J Mol Neurosci 71, 66–79 (2021). https://doi.org/10.1007/s12031-020-01627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01627-3

Keywords

Navigation