Skip to main content
Log in

Mechanical response of nanoporous nickel investigated using molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of pore size on the deformation mechanism and mechanical properties of nanoporous Ni under tension and compression tests is studied using molecular dynamic simulations in terms of atomic trajectories, dislocation extraction algorithm, and the stress–strain curve. The simulation results show that samples have a longer elastic deformation period during tension compared to that during compression. Dislocations nucleate at pore surfaces and propagate until they are terminated by neighboring pores. Samples under tension have lower ultimate stress and higher strain at ultimate stress compared to those of samples under compression. Samples with smaller pore diameter have more transformation from face-centered cubic to hexagonal close-packed structures due to more dislocation activity. The ultimate stress of samples significantly decreases with increasing pore diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev 41:319–388

    Article  CAS  Google Scholar 

  2. Huang JF, Sun IW (2005) Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au–Zn in an ionic liquid, and the self-assembly of L-Cysteine monolayers. Adv Funct Mater 15:989–994

    Article  CAS  Google Scholar 

  3. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172

    Article  CAS  Google Scholar 

  4. Rintoul MD, Torquato S, Yeong C, Keane DT, Erramilli S, Jun YN, Dabbs DM, Aksay IA (1996) Structure and transport properties of a porous magnetic gel via X-ray microtomography. Phys Rev E 54:2663–2669

    Article  CAS  Google Scholar 

  5. Ding Y, Chen M (2009) Nanoporous metals for catalytic and optical applications. MRS Bull 34:569–576

    Article  CAS  Google Scholar 

  6. Weissmüller J, Newman RC, Jin HJ, Hodge AM, Kysar JW (2009) Nanoporous metals by alloy corrosion: formation and mechanical properties. MRS Bull 34:577–586

    Article  Google Scholar 

  7. Riveros G, Gómez H, Cortes A, Marotti RE, Dalchiele EA (2005) Crystallographically-oriented single-crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Appl Phys A – Mater 81:17–24

    Article  CAS  Google Scholar 

  8. Parida S, Kramer D, Volkert CA, Rösner H, Erlebacher J, Weissmüller J (2006) Volume change during the formation of nanoporous gold by dealloying. Phys Rev Lett 97:035504

    Article  CAS  Google Scholar 

  9. Balk TJ, Eberl C, Sun Y, Hemker KJ, Gianola DS (2009) Tensile and compressive microspecimen testing of bulk nanoporous gold. J Microsc 61:26–31

    CAS  Google Scholar 

  10. Biener J, Hodge AM, Hayes JR, Volkert CA, Zepeda-Ruiz LA, Hamza AV, Abr FF (2006) Size effects on the mechanical behavior of nanoporous Au. Nano Lett 6(10):2379–2382

    Article  CAS  Google Scholar 

  11. Xian Y, Li J, Wu R, Re X (2018) Softening of nanocrystalline nanoporous platinum: a molecular dynamics simulation. Comput Mater Sci 143:163–169

    Article  CAS  Google Scholar 

  12. Gunkelmann N, Bringa EM, Rosandi Y (2018) Molecular dynamics simulations of aluminum foams under tension: influence of oxidation. J Phys Chem C 122:26243–26250

    Article  CAS  Google Scholar 

  13. Farkas D, Caro A, Bringa E, Crowson D (2013) Mechanical response of nanoporous gold. Acta Mater 61:3249–3256

    Article  CAS  Google Scholar 

  14. Sun XY, Xu GK, Li X, Feng XQ, Gao H (2013) Mechanical properties and scaling laws of nanoporous gold. J Appl Phys 113:023505-1–023505-9

    Google Scholar 

  15. Li JJ, Xian YH, Zhou HJ, Wu RN, Hu GM, Re X (2018) Mechanical properties of nanocrystalline nanoporous gold complicated by variation of grain and ligament: a molecular dynamics simulation. Sci China Technol Sci 61(9):1353–1363

    Article  CAS  Google Scholar 

  16. Ruestes CJ, Bringa EM, Stukowski A, Nieva JFR, Bertolino G, Tang Y, Meyers MA (2013) Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal. Scr Mater 68:817–820

    Article  CAS  Google Scholar 

  17. Yuan F, Wu X (2014) Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression. AIP Adv 4: 127109-1-11

  18. Li JJ, Lu BB, Xian YH, Hu GM, Xia R (2018) Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Phys Sin: 67(5) 056101-1-7

  19. Winter N, Becton M, Zhang L, Wang X (2017) Effects of pore design on mechanical properties of nanoporous silicon. Acta Mater 124:127–136

    Article  CAS  Google Scholar 

  20. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  21. Stuckowski A (2010) Visualization and analysis of atomistic simulation data with OVITO - open visualization tool. Model Simul Mater Sci Eng 18:015012-1–015012-7

    Google Scholar 

  22. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  23. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  24. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20: 085007-1-16

  25. Li J, Xian Y, Zhou H, Wu R, Hu G, Xia R (2018) Microstructure-sensitive mechanical properties of nanoporous gold: a molecular dynamics study. Modelling Simul Mater Sci Eng 26: 075003-1–23

Download references

Funding

This work was supported by the Ministry of Science and Technology, Taiwan, under grants MOST 106-2221-E-033-023 and MOST 107-2218-E-033-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Da Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CD., Cheng, YW. & Hong, GW. Mechanical response of nanoporous nickel investigated using molecular dynamics simulations. J Mol Model 26, 185 (2020). https://doi.org/10.1007/s00894-020-04439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04439-9

Keywords

Navigation