Skip to main content
Log in

Chaotic Motions in Dynamic High-Tc Superconducting Levitation System with Thermal Effects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The chaotic motions were shown by the vibrations of a bulk permanent magnet (PM) supported by a cylindrical high-Tc superconductor (HTSC) under external disturbance in very early experiments. There are few theoretical studies on the nonlinear behaviors of the HTSC levitation system as the complex interaction between the HTSC and PM. In this paper, we developed a numerical program to analyze the nonlinear vibrations of the levitated PM coupled with the electromagnetic force, taking into account the heat diffusion on HTSC. When the levitation system displayed chaotic oscillations by vertical excitation, the electromagnetic and thermal characteristics of the HTSC will change. The dynamic responses are shown by comparing the calculation results in which the thermal effects are taken into account and not. The numerical results display the displacements of PM, magnetic levitation forces, the acceleration, and the maximum Lyapunov exponent. The results show that the thermal effect will influence the stability of the levitation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Cansiz, I. Yildizer, Cryogenics 63, 180 (2014)

    Article  ADS  Google Scholar 

  2. J. Wang, S. Wang, Y. Zeng, H. Huang, F. Luo, Z. Xu, Q. Tang, G. Lin, C. Zhang, Z. Ren, Phys. C: Supercond. 378, 809 (2002)

    Article  ADS  Google Scholar 

  3. J. Wang, S. Wang, Y. Zeng, C. Deng, Z. Ren, X. Wang, H. Song, X. Wang, J. Zheng, Y. Zhao, Supercond. Sci. Technol. 18, S215 (2005)

    Article  ADS  Google Scholar 

  4. R. Sawh, R. Weinstein, K. Carpenter, D. Parks, K. Davey, Supercond. Sci. Technol. 30, 4 (2017)

    Article  Google Scholar 

  5. K. Takase, S. Shindo, K. Demachi, K. Miya, J. Mater. Process. Technol. 108, 152 (2001)

    Article  Google Scholar 

  6. J.R. Hull, Supercond. Sci. Technol. 13, R1 (2000)

    Article  ADS  Google Scholar 

  7. T. Hikihara, F.C. Moon, Phys C: Supercond. 250, 121 (1995)

    Article  ADS  Google Scholar 

  8. B. Smolyak, M. Babanov, G. Ermakov, I. Smolyak, S. Naumov, Phys. C: Supercond. 302, 23 (1998)

    Article  ADS  Google Scholar 

  9. T. Hikihara, F.C. Moon, Phys. Lett. A 191, 279 (1994)

    Article  ADS  Google Scholar 

  10. T. Hikihara, T. Fujinami, F.C. Moon, Phys. Lett. A 231, 3–4 (1997)

    Article  Google Scholar 

  11. M. Philippe, M.D. Ainslie, L. Wera, J.-F. Fagnard, A. Dennis, Y. Shi, D.A. Cardwell, B. Vanderheyden, P. Vanderbemden, Supercond. Sci. Technol. 28, 9 (2015)

    Article  Google Scholar 

  12. Y. Huang, X. Zhang, Y.-H. Zhou, Supercond. Sci. Technol. 29, 7 (2016)

    Article  Google Scholar 

  13. Z. Deng, W. Zhang, J. Zheng, Y. Ren, D. Jiang, X. Zheng, J. Zhang, P. Gao, Q. Lin, B. Song, IEEE Trans. Appl. Supercond. 26, 6 (2016)

    Article  Google Scholar 

  14. Z. Deng, W. Zhang, J. Zheng, B. Wang, Y. Ren, X. Zheng, J. Zhang, IEEE Trans. Appl. Supercond. 27, 6 (2017)

    Article  Google Scholar 

  15. X.-F. Gou, X.-J. Zheng, Y.-H. Zhou, IEEE Trans. Appl. Supercond. 17, 3803 (2007)

    Article  ADS  Google Scholar 

  16. X.-F. Gou, X.-J. Zheng, Y.-H. Zhou, IEEE Trans. Appl. Supercond. 17, 3795 (2007)

    Article  ADS  Google Scholar 

  17. P.-J. Zhuo, Z.-X. Zhang, X.-F. Gou, IEEE Trans. Appl. Supercond. 26, 1 (2016)

    Article  Google Scholar 

  18. L. Alloui, K.B. Alia, F. Bouillault, S. Mimoune, L. Bernard, J. Lévêque, Phys C: Supercond 487, 1 (2013)

    Article  ADS  Google Scholar 

  19. J. Vestgården, D. Shantsev, Y. Galperin, T. Johansen, Phys. Rev. B 84, 054537 (2011)

    Article  ADS  Google Scholar 

  20. Y.-H. Zhou, X. Yang, Phys. Rev. B 74, 054507 (2006)

    Article  ADS  Google Scholar 

  21. C.-G. Huang, H.-D. Yong, Y.-H. Zhou, J. Low Temp. Phys. 172, 59 (2013)

    Article  ADS  Google Scholar 

  22. R.B. Kasal, R. de Andrade, G.G. Sotelo, A.C. Ferreira, IEEE Trans. Appl. Supercond. 17, 2158 (2007)

    Article  ADS  Google Scholar 

  23. L. Alloui, F. Bouillault, S.M. Mimoune, Eur. Phys. J. Appl. Phys. 45, 20801 (2009)

    Article  Google Scholar 

  24. J.R. Hull, A. Cansiz, J. Appl. Phys. 86, 6396 (1999)

    Article  ADS  Google Scholar 

  25. M.T. Rosenstein, J.J. Collins, C.J. De Luca, Phys D: Nonlinear Phenom. 65, 117 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Young and Middle-aged Teacher Basic Ability Improvement Project of Guangxi Department of Education (2018KY0170), Introduction Talent Research Projects of Guangxi University for Nationalities (2017KJQD001), and Natural Science Foundation of Guangxi (2019GXNSFBA185001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Qin, ZC. & Ma, FJ. Chaotic Motions in Dynamic High-Tc Superconducting Levitation System with Thermal Effects. J Low Temp Phys 201, 285–293 (2020). https://doi.org/10.1007/s10909-020-02491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02491-6

Keywords

Navigation