Skip to main content

Advertisement

Log in

Material stability consideration for common compressible isotropic hyper-elastic models

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, based on the stability criteria described by the B–E inequality, E-inequality and T–C inequality, the region of stability is evaluated for common compressible isotropic hyper-elastic models by using the deformation modes of simple shear and volumetric change. For models with three model constants, the region of stability will be that of deformation induced by the inequalities due to the normalization conditions. For the models with four constants, for example, the region of stability will be two-folded. For the case in which the free constant is given, the region of deformation will be restricted. For the case in which the limiting deformation is given, the region of the free constant will be restricted. The current work describes how the region of deformation and/or free constant is determined when a compressible hyper-elastic model is utilized in practical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. k = 20 corresponds to the infinitesimal Poisson's ratio ν = 0.475. In reality, smaller values of v = 0.45 (i.e. k = 9.67) and v = 0.47 (i.e. k = 16.33) were used in (González et al. 2019) or (Sanborn and Song 2018).

References

  • Baker, M., Ericksen, J.L.: Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner–Rivlin fluids. J. Wash. Acad. Sci. 44, 33–35 (1954)

    MathSciNet  Google Scholar 

  • Beda, T.: An approach for hyperelastic model-building and parameters estimation a review of constitutive models. Eur. Polym. J. 50, 97–108 (2014)

    Article  Google Scholar 

  • Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)

    Article  Google Scholar 

  • Carroll, M.M.: A strain energy function for vulcanized rubbers. J. Elast. 103, 173–187 (2010)

    Article  MathSciNet  Google Scholar 

  • Chaves, E.W.V.: Notes on Continuum Mechanics. Springer, Netherlands (2013)

    Book  Google Scholar 

  • Chen, L., Chang, Z., Qin, T.: Elastic wave propagation in simple-sheared hyperelastic materials with different constitutive models. Int. J. Solids Struct. 126–127, 1–7 (2017)

    Google Scholar 

  • Ciarlet, P.G.: Mathematical Elasticity Volume I: Three-Dimensional Elasticity. Elsevier, The Netherlands (1988)

    MATH  Google Scholar 

  • Dal, H., Cansiz, B., Miehe, C.: A three-scale compressible micro-sphere model for hyperelastic materials. Int. J. Numer. Methods Eng. 116, 412–433 (2018)

    Article  Google Scholar 

  • Destrade, M., Saccomandi, G., Sgura, I.: Methodical fitting for mathematical models of rubber-like materials. Proc. R. Soc. A 473, 20160811 (2017)

    Article  Google Scholar 

  • Fernández, J.R., López-Campos, J.A., Segade, A., Vilán, J.A.: A genetic algorithm for the characterization of hyperelastic materials. Appl. Math. Comput. 329, 239–250 (2018)

    MathSciNet  MATH  Google Scholar 

  • Gendy, A.S., Saleeb, A.F.: Nonlinear material parameter estimation for characterizing hyper elastic large strain models. Comput. Mech. 25, 66–77 (2000)

    Article  Google Scholar 

  • Gent, A.N., Thomas, A.G.: Forms for the stored (strain) energy function for vulcanized rubber. J. Polym. Sci. 28, 625–628 (1958)

    Article  Google Scholar 

  • González, D., Chinesta, F., Cueto, E.: Learning corrections for hyperelastic models from data. Front. Mater. 6, 14 (2019)

    Article  Google Scholar 

  • Hartmann, S.: Numerical studies on the identification of the material parameters of rivlin’s hyperelasticity using tension–torsion tests. Acta Mech. 148, 129–155 (2001)

    Article  Google Scholar 

  • Liu, I.-S.: A note on the Mooney–Rivlin material model. Contin. Mech. Thermodyn. 24, 583–590 (2012)

    Article  MathSciNet  Google Scholar 

  • Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. A 467, 3633–3646 (2011)

    Article  MathSciNet  Google Scholar 

  • Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  Google Scholar 

  • Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958)

    Article  MathSciNet  Google Scholar 

  • Pence, T.J., Gou, K.: On compressible versions of the incompressible neo-Hookean material. Math. Mech. Solids. 20, 157–182 (2015)

    Article  Google Scholar 

  • Sanborn, B., Song, B.: Poisson’s ratio of a hyperelastic foam under quasi-static and dynamic loading. Int. J. Impact Eng. 123, 48–55 (2018)

    Article  Google Scholar 

  • Sasson, A., Patchornik, S., Eliasy, R., Robinson, D., Haj-Ali, R.: Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement—experimental testing and constitutive modeling. J. Mech. Behav. Biomed. Mater. 8, 143–153 (2012)

    Article  Google Scholar 

  • Seibert, D.J., Schöche, N.: Direct comparison of some recent rubber elasticity models. Rubber Chem. Technol. 73, 366–384 (2000)

    Article  Google Scholar 

  • Su, Y., Wu, B., Chen, W., Destrade, M.: Finite bending and pattern evolution of the associated instability for a dielectric elastomer slab. Int. J. Solids Struct. 158, 191–209 (2019)

    Article  Google Scholar 

  • Su, Y., Wu, B., Chen, W., Destrade, M.: Pattern evolution in bending dielectric–elastomeric bilayers. J. Mech. Phys. Solids 136, 103670 (2020)

    Article  MathSciNet  Google Scholar 

  • Tobajas, R., Ibartz, E., Gracia, L.: A comparative study of hyperelastic constitutive models to characterize the behavior of a polymer used in automotive engines. In: 2nd International Electronic Conference on Materials (2016). http://doi.org/10.3390/ecm-2-A002

  • Treloar, L.R.G.: The Physics of Rubber Elasticity, pp. 83–84. Oxford University Press, Oxford (2005)

    Google Scholar 

  • Truesdell, C., Toupin, R.: Static grounds for inequalities in finite strain of elastic materials. Arch. Ration. Mech. Anal. 12, 1–33 (1963)

    Article  MathSciNet  Google Scholar 

  • Upadhyay, K., Subhash, G., Spearot, D.: Thermodynamics-based stability criteria for constitutive equations of isotropic hyperelastic solids. J. Mech. Phys. Solids 124, 115–142 (2019)

    Article  MathSciNet  Google Scholar 

  • Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear Mech. 40, 271–279 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant No. 11672221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X.F., Li, L.X. Material stability consideration for common compressible isotropic hyper-elastic models. Int J Mech Mater Des 16, 801–815 (2020). https://doi.org/10.1007/s10999-020-09504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09504-y

Keywords

Navigation