Skip to main content
Log in

Isolation of the Magnetic Contribution to the Thermal Expansion of Nickel at Ferromagnetic Transformation on the Base of Analysis of β(CP) Correlation Dependence

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

A significant result of the analysis of the correlation dependence of the coefficient of volumetric thermal expansion β on the isobaric heat capacity CP of a substance undergoing a phase transformation can be the thermodynamically correct isolation of an additional contribution to one of these two quantities if the other has been studied sufficiently fully. The magnetic contribution to the expansion coefficient of nickel undergoing ferromagnetic ordering at the Curie point TC = 631 K serves as an illustration of the model approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bodryakov, V.Yu. and Babintsev, Yu.N., Phys. Solid State, 2015, vol. 57, no. 6, p. 1264.

    Article  ADS  Google Scholar 

  2. Bodryakov, V.Yu., High Temp., 2015, vol. 53, no. 5, p. 643.

    Article  Google Scholar 

  3. Bodryakov, V.Yu. and Bykov, A.A., Russ. Metall. (Engl. Transl.), 2016, no. 3, p. 61.

  4. Bodryakov, V.Yu., High Temp., 2016, vol. 54, no. 3, p. 366.

    Article  Google Scholar 

  5. Bodryakov, V.Yu., High Temp., 2018, vol. 56, no. 2, p. 177.

    Article  Google Scholar 

  6. Vonsovskii, S.V., Magnetizm. Magnitnye svoistva dia-, para, ferro-, antiferro-, i ferrimagnetikov (Magnetism: Magnetic Properties of Dia-, Para, Ferro-, Antiferro-, and Ferrimagnets), Moscow: Nauka, 1971.

  7. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 5: Statisticheskaya fizika (Statistical Physics), part 1, Moscow: Fizmatlit, 2005.

  8. Moriya, T., J. Magn. Magn. Mater., 1979, vol. 14, p. 1.

    Article  ADS  Google Scholar 

  9. Moriya, T., Spin Fluctuations in Itinerant Electron Magnetism, Springer Series in Solid-State Sciences, vol. 56, New York: Springer, 2012.

    Google Scholar 

  10. Bodryakov, V.Yu. and Bashkatov, A.N., Tech. Phys., 2007, vol. 52, no. 3, p. 313.

    Article  Google Scholar 

  11. Busey, R.H. and Giauque, W.F., J. Am. Chem. Soc., 1952, vol. 74, no. 12, p. 3157.

    Article  Google Scholar 

  12. Krauß, F. and Warncke, H., Z. Metallkd., 1955, vol. 46, no. 1, p. 61.

    Google Scholar 

  13. Corruccini, R.J. and Gnievek, J.J., Specific Heats and Enthalpies of Technical Solids at Low Temperatures. A Compilation from the Literature, National Bureau of Standards Monograph NBS-21, Washington, DC: US Gov. Printing Office, 1960.

  14. Vollmer, O., Kohlhaas, R., and Braun, M., Z. Naturforsch.,A: Phys. Sci., 1966, vol. 21a, nos. 1–2, p. 181.

    Google Scholar 

  15. Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., and Kelley, K.K., Selected Values of the Thermodynamic Properties of the Elements, Metals Park, OH: Am. Soc. Met., 1973.

    Google Scholar 

  16. Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh. Spravochnoe izdanie (Thermophysical Properties of Materials at Low Temperatures: A Reference Book) Moscow: Mashinostroenie, 1975.

  17. Robie, R.A., Hemingway, B.S., and Fisher, J.R., Thermodynamic Properties of Minerals and Related Substances at 298.15 K (25°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures, Geological Survey Bulletin, Washington, DC: US Gov. Printing Office, 1979, no. 1452.

  18. Novikov, I.I., Roshchupkin, V.V., Mozgovoi, A.G., and Semashko, N.A., High Temp., 1981, vol. 19, no. 5, p. 694.

    Google Scholar 

  19. Meschter, P.J., Wright, J.W., Brooks, C.R., and Kollie, T.G., J. Phys. Chem. Solids, 1981, vol. 42, no. 9, p. 861.

    Article  ADS  Google Scholar 

  20. Chase, M.W., Jr., Curnutt, J.L., Downey, J.R., Jr., McDonald, R.A., Syverud, A.N., and Valenzuela, E.A., J. Phys. Chem. Ref. Data, 1982, vol. 11, no. 3, p. 695.

    Article  ADS  Google Scholar 

  21. Glazkov, S.Yu., High Temp., 1987, vol. 25, no. 1, p. 51.

    Google Scholar 

  22. Desai, P.D., Int. J. Thermophys., 1987, vol. 8, no. 6, p. 763.

    Article  ADS  Google Scholar 

  23. Fizicheskie velichiny. Spravochnik (Physical Quantities: A Reference Book), Grigor’ev, I.S. and Meilikhov, E., Eds., Moscow: Energoatomizdat, 1991.

  24. Dinsdale, A.T., SGTE Data for Pure Elements, NPL Materials Centre, Division of Industry and Innovation, Natl. Phys. Lab., Teddington, Middlesex, TW11 0LW, UK, 2007.

  25. Corruccini, R.J. and Gnievek, J.J., Thermal Expansion of Technical Solids at Low Temperatures: A Compilation from the Literature, National Bureau of Standards Monograph NBS-29, Washington, DC: US Gov. Printing Office, 1961.

  26. Totskii, E.E., Teplofiz.Vys. Temp., 1964, vol. 2, no. 2, p. 205.

    Google Scholar 

  27. Tanji, Y., J. Phys. Soc. Jpn., 1971, vol. 31, no. 5, p. 1366.

    Article  ADS  Google Scholar 

  28. Novikova, S.I., Teplovoe rasshirenie tverdykh tel: Spravochnik (Thermal Expansion of Solids: A Reference Book), Moscow: Nauka, 1974.

  29. Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D., Thermophysical Properties of Matter, vol. 12: Thermal Expansion: Metallic Elements and Alloys, New York: IFI/Plenum, 1975.

    Book  Google Scholar 

  30. Kollie, T.G., Phys. Rev. B: Solid State, 1977, vol. 16, no. 11, p. 4872.

    Article  ADS  Google Scholar 

  31. Abdullaev, R.N., Kozlovskii, Yu.M., Khairulin, R.A., and Stankus, S.V., Int. J. Thermophys., 2015, vol. 36, no. 4, p. 603.

    Article  ADS  Google Scholar 

  32. Palchaev, D.K., Murlieva, Z.K., Gadzhimagomedov, S.H., Iskhakov, M.E., Rabadanov, M.K., and Abdulagatov, I.M., Int. J. Thermophys., 2015, vol. 36, nos. 10–11, p. 3186.

    Article  ADS  Google Scholar 

  33. Arblaster, J.W., Selected Values of the Crystallographic Properties of the Elements, Materials Park, OH: ASM Int., 2018.

    Google Scholar 

  34. Fortov, V.E. and Lomonosov, I.V., Pure Appl. Chem., 1997, vol. 69, p. 893.

    Article  Google Scholar 

  35. Levashov, P.R., Fortov, V.E., Khishchenko, K.V., and Lomonosov, I.V., AIP Conf. Proc., 2000, vol. 505, p. 89.

    Article  ADS  Google Scholar 

  36. Kerley, G.I., Equations of State for Be, Ni, W, and Au, Technical report SAND 2003-3784, Albuquerque, NM: Sandia Natl. Lab., 2003.

  37. George, P.K. and Thompson, E.D., J. Phys. Chem. Solids, 1967, vol. 28, no. 12, p. 2539.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bodryakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodryakov, V.Y. Isolation of the Magnetic Contribution to the Thermal Expansion of Nickel at Ferromagnetic Transformation on the Base of Analysis of β(CP) Correlation Dependence. High Temp 58, 213–217 (2020). https://doi.org/10.1134/S0018151X20020042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20020042

Navigation