Skip to main content
Log in

Analysis of Data on Zero and Negative Thermal Expansion Coefficients of Materials

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

Many specific features and anomalies of the properties of water at low temperatures and negative pressures or hydrogen and nitrogen at megabar pressures and high temperatures are related to zero and negative coefficients of thermal expansion. A review of numerous examples of manifestation of these features for various materials in different states is presented. A set of data and methods for the analysis of negative thermal expansion coefficients is singled out for an independent line of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Barrera, G.D., Bruno, J.A.O., Barron, T.H.K., and Allan, N.L., J. Phys.: Condens. Matter, 2005, vol. 17, p. R217.

    ADS  Google Scholar 

  2. Miller, W., Smith, C.F., Mackenzie, D.S., and Evans, K.E., J. Mater. Sci., 2009, vol. 44, p. 5441.

    ADS  Google Scholar 

  3. Lind, C., Materials, 2012, vol. 5, p. 1125.

    ADS  Google Scholar 

  4. Dove, M.T. and Fang, H., Rep. Prog. Phys., 2016, vol. 79, 066503.

    ADS  Google Scholar 

  5. Liu, Z., Gao, Q., Chen, J., et al., Chem. Commun., 2018, vol. 54, p. 5164.

    Google Scholar 

  6. Takenaka, K., Front. Chem., 2018, vol. 6, p. 267.

    ADS  Google Scholar 

  7. Mittal, B., Gupta, M.K., and Chaplot, S.L., Prog. Mater. Sci., 2018, vol. 92, p. 360.

    Google Scholar 

  8. Novikova, S.I., Teplovoe rasshirenie tverdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974.

  9. Fokin, L.R., Russ. J. Phys. Chem. A, 2018, vol. 92, p. 1877.

    Google Scholar 

  10. Bridgman, P., Rev. Mod. Phys., 1935, vol. 7, p. 1.

    ADS  Google Scholar 

  11. Bridgman, P., Usp. Phys. Nauk, 1936, vol. 16, no. 1, p. 64.

    Google Scholar 

  12. Medvedev, A.B. and Trunin, R.F., Phys.—Usp., 2012, vol. 55, p. 773.

    Google Scholar 

  13. Brazhkin, V.V., Phys.—Usp., 2012, vol. 55, p. 790.

    Google Scholar 

  14. Medvedev, A.B., Combust., Explos. Shock Waves (Engl. Transl.), 2014, vol. 50, no. 4, p. 463.

  15. Medvedev, A.B., Combust., Explos. Shock Waves (Engl. Transl.), 2018, vol. 54, no. 2, p. 216.

  16. Semenchenko, V.K., Izbrannye glavy teoreticheskoi fiziki (Theoretical Physics: Selected Chapters), Moscow: Uchpedgiz, 1960.

  17. Henderson, S.J. and Speedy, R.J., J. Phys. Chem., 1987, vol. 94, p. 3062.

    Google Scholar 

  18. Pallares, G., Gonzalez, M.A., Abasal, J.L.A., et al., Phys. Chem. Chem. Phys., 2016, vol. 18, p. 5896.

    Google Scholar 

  19. Gregorynz, E., Degtyreva, O., Somayazulu, M., et al., Phys. Rev. Lett., 2005, vol. 94, no. 18, 185502.

    ADS  Google Scholar 

  20. Driver, K.P., Soubiran, F., Zhang, S., and Militzer, B., J. Chem. Phys., 2015, vol. 143, 164507.

    ADS  Google Scholar 

  21. Pankov, V., Ullmann, W., Heinrich, R., Kracke, D., Russ. J. Earth Sci., 1998, vol. 1, p. 13.

    Google Scholar 

  22. Stacey, F.D. and Hodgkinson, J.H., Phys. Earth Planet. Inter., 2019, vol. 286, p. 42.

    ADS  Google Scholar 

  23. Rancourt, D.G. and Dang, M.-Z., Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, p. 12225.

    ADS  Google Scholar 

  24. Matsui, M. and Chikazumi, S., J. Phys. Soc. Jpn., 2007, vol. 45, p. 458.

    ADS  Google Scholar 

  25. Roose, S. and Heltzer, S., High-precision measurements of thermal expansion at cryogenic temperature on stable materials, in Proc. MacroScale 2011, Waber, Switzerland, 2011.

  26. Badami, V.G. and Linder, M., Proc. SPIE, 2002, vol. 4688, p. 469.

    ADS  Google Scholar 

  27. Shen, F.-R., Huang, H., Hu, F.-X., and Wu, H., APL Mater., 2017, vol. 5, 106102.

    ADS  Google Scholar 

  28. Zakharov, A.I., Fizika pretsizionnykh splavov s osobymi teplovymi svoistvami (Physics of Precision Alloys with Special Thermal Properties), Moscow: Metallurgiya, 1986.

  29. Sychev, V.V., Slozhnye termodinamicheskie sistemy (Complex Thermodynamic Systems), Moscow: Mosk. Energ. Inst., 2009, 4th ed.

  30. Barns, S.J. and Barns, S.P., Solid Earth Discuss., 2014, vol. 6, p. 487.

    ADS  Google Scholar 

  31. Rumer, Yu.B. and Ryvkin, M.Sh., Termodinamika, statisticheskaya fizika i kinetika (Thermodynamics, Statistical Physics, and Kinetics), Moscow: Nauka, 1972.

  32. Liu, D., Zhang, Y., Chen, C.-C., et al., Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, p. 9570.

    ADS  Google Scholar 

  33. Mallamace, F., Branca, C., Broccio, M., et al., Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, p. 18387.

    ADS  Google Scholar 

  34. Gallo, P., Amann-Winkler, K., Angel, C.A., et al., Chem. Rev., 2016, vol. 116, p. 7463.

    Google Scholar 

  35. Röttger, K., Endriss, A., Inringer, J., et al., Acta Crystallogr., Sect. B: Struct. Sci., 1994, vol. 50, p. 644.

    Google Scholar 

  36. Russo, J., Akahane, K., and Tanaka, H., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, p. 3333.

    ADS  Google Scholar 

  37. Wu, C.J., Glosli, J.N., Galli, G., and Ree, F.H., Phys. Rev. Lett., 2002, vol. 89, 135701.

    ADS  Google Scholar 

  38. Kim, O. and Ree, F.H., J. Chem. Phys., 2003, vol. 119, p. 6053.

    ADS  Google Scholar 

  39. Watanabe, M., Adachi, M., Morishita, T., et al., Faraday Discuss., 2007, vol. 136, p. 279.

    ADS  Google Scholar 

  40. Batsanov, S.S., Combust., Explos. Shock Waves (Engl. Transl.), 2013, vol. 49, no. 4, p. 490.

  41. Stacey, F.D., Rep. Prog. Phys., 2005, vol. 68, p. 341.

    ADS  Google Scholar 

  42. Srivastava, S.K., Kumar, S., and Pandey, O.P., High Temp.—High Pressures, 2011, vol. 40, no. 2, p. 161.

    Google Scholar 

  43. Dwivedi, A., High Temp.—High Pressures, 2016, vol. 45, no. 4, p. 291.

    Google Scholar 

  44. Kumar, S., Sharma, S.K., and Pandey, O.P., PramanaJ. Phys., 2016, vol. 87, no. 2, p. 21.

    Google Scholar 

  45. Birch, F., J. Geophys. Res., 1952, vol. 57, p. 227.

    ADS  Google Scholar 

  46. Anderson, O.L., Equation of State of Solids for Geophysics and Ceramic Science, New York: Oxford Univ. Press, 1995.

    Google Scholar 

  47. Dorogokupets, P.I., Sokolova, T.S., Danilov, B.S., and Litasov, K.D., Geodin.Tektonofiz., 2012, vol. 3, no. 2, p. 129.

    Google Scholar 

  48. Al’tshuler, L.V. and Bakanova, A.A., Sov. Phys. Usp., 1968, vol. 11, p. 678.

    ADS  Google Scholar 

  49. Chopelas, A. and Boehler, R., Geophys. Rev. Lett., 1992, vol. 19, p. 1983.

    ADS  Google Scholar 

  50. Litasov, K.D., Dorogokupets, P., Ohtani, E., et al., J. Appl. Phys., 2013, vol. 113, 093507.

    ADS  Google Scholar 

  51. Arblaster, J., Selected Values of the Crystallographic Properties of the Elements, Metal Park, OH: ASM Int., 2018.

    Google Scholar 

  52. Peletskii, V.E. Chekhovskoi, V.Ya., Latyev, L.N., et al., Teplofizicheskie svoistva molibdena i ego splavov. Spravochnik (Thermophysical Properties of Molybdenum and Its Alloys: A Handbook), Sheindlin, A.E., Ed., Moscow: Metallurgiya, 1990.

    Google Scholar 

  53. Fokin, L.R. and Chekhovskoi, V.Ya., HighTemp., 1991, vol. 29, no. 1, p. 89.

    Google Scholar 

  54. Srivastava, S.K., Sharma, S.K., Vinod, K., and Malik, V.S., J. Phys. Chem. Solids, 2008, vol. 69, p. 1029.

    ADS  Google Scholar 

  55. Sharma, S.K., Sharma, B.K., Kumar, R., and Sharma, B.S., Mod. Phys. Lett. B, 2011, vol. 25, p. 2183.

    ADS  Google Scholar 

  56. McWilliams, R.S., Spaulding, D.K., Eggert, J.H., et al., Science, 2012, vol. 338, p. 330.

    Google Scholar 

  57. Chen, J., Hu, L., Dong, J., and Hing, H., Chem. Soc. Rev., 2014, vol. 7, p. 3522.

    Google Scholar 

  58. Barron, T.H.K., Collins, J.G., and White, G.K., Adv. Phys., 1980, vol. 29, no. 4, p. 609.

    ADS  Google Scholar 

  59. Smith, H.D.T., J. Am. Ceram. Soc., 1955, vol. 38, no. 4, p. 140.

    Google Scholar 

  60. Antao, S.M., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, p. 249.

    Google Scholar 

  61. Attfield, J.P., Front. Chem., 2018, vol. 6, p. 371.

    ADS  Google Scholar 

  62. Fisher, D.J., Mater. Res. Found., 2018, vol. 22, 178 p.

    Google Scholar 

  63. Patashinski, A.Z., Mitus, A.C., and Ratner, M.A., Phys. Rep., 1997, vol. 288, p. 409.

    ADS  Google Scholar 

  64. Vasin, M.G. and Lad’yanov, V.I., Vestn. Udmurt. Univ., Ser. Fiz., 2005, no. 4, p. 99.

  65. Vasin, M.G., Stekol’shikov, V.A., and Lad’yanov, V.I., Vestn. Udmurt. Univ., Ser. Fiz., 2006, no. 4, p. 93.

  66. Liquid Polymorphism, Stanley, H.G., Ed., vol. 152 of Advances in Chemical Physics, Rice, S.A. and Dinner, A.R., Eds., New York: Wiley, 2013.

  67. Anisimov, M.A., Duška, M., Cauplin, F., et al., Phys. Rev. X, 2018, vol. 8, 011004.

    Google Scholar 

  68. Aptekar, L.I., Sov. Phys. Dokl., 1979, vol. 24, p. 993.

    ADS  Google Scholar 

  69. Ponyatovskii, E.G., Sinitsin, V.V., and Pozdnyakova, T.A., JETP Lett., 1994, vol. 60, no. 5, p. 360.

    ADS  Google Scholar 

  70. Makov, G. and Yahel, E., J. Chem. Phys., 2011, vol. 134, 204507.

    ADS  Google Scholar 

  71. Shimizu, H. and Hiwatari, Y., Mol. Simul., 2013, vol. 40, p. 370.

    Google Scholar 

  72. Stillinger, F.H. and Stillinger, D.K., Phys. A(Amsterdam,Neth.), 1997, vol. 244, p. 358.

    Google Scholar 

  73. Palmer, J.C., Poole, P.H., Sciortino, F., and Debenedetti, P.G., Chem. Rev., 2018, vol. 118, p. 9129.

    Google Scholar 

  74. Fomin, Yu. and Ryzhov, V.N., in Liquid Polymorphism, Stanley, H.G., Ed., vol. 152 of Advances in Chemical Physics, Rice, S.A. and Dinner, A.R., Eds., New York: Wiley, 2013, p. 81.

  75. Vashist, V.V., Saw, S., and Sastry, S., in Liquid Polymorphism, Stanley, H.G., Ed., vol. 152 of Advances in Chemical Physics, Rice, S.A. and Dinner, A.R., Eds., New York: Wiley, 2013, p. 463.

  76. Stillinger, F.H. and Weber, T.A., Phys. Rev. B: Condens. Matter Mater. Phys., 1985, vol. 31, p. 5268.

    ADS  Google Scholar 

  77. Barnard, A.S. and Russo, S.P., Mol. Phys., 2002, vol. 100, p. 1517.

    ADS  Google Scholar 

  78. Bhat, M.H., Molinero, V., Soignard, E., et al., Nature, 2007, vol. 448, p. 787.

    ADS  Google Scholar 

  79. Molinero, V. and Moore, E.B., J. Phys. Chem. B, 2009, vol. 113, p. 4008.

    Google Scholar 

  80. Hujo, V., Jabes, B.S., Rana, V.K., et al., J. Stat. Phys., 2011, vol. 145, no. 2, p. 293.

    ADS  Google Scholar 

  81. Russo, J., Akahane, K., and Tanaka, H., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 15, p. 3333.

    ADS  Google Scholar 

  82. Saika-Voivod, I. and Poole, P.H., in Liquid Polymorphism, Stanley, H.G., Ed., vol. 152 of Advances in Chemical Physics, Rice, S.A. and Dinner, A.R., Eds., New York: Wiley, 2013, p. 373.

  83. Shell, M.S., Debenedetti, P.G., and Panagliotopoulos, A.Z., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2002, vol. 66, 011202.

    ADS  Google Scholar 

  84. Jabes, B.S., Agarwal, M., and Chakravarty, C., J. Chem. Phys., 2010, vol. 132, 234507.

    ADS  Google Scholar 

  85. Shi, R. and Tanaka, H., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 9, p. 980.

    Google Scholar 

  86. Van Beest, B.W.H., Kramer, G.J., and van Santes, R.A., Phys. Rev. Lett., 1990, vol. 64, no. 4, p. 1955.

    ADS  Google Scholar 

  87. Iosilevski, I., Grysnov, V., and Solov’ev, A., High Temp.—High Pressures, 2014, vol. 43, no. 2, p. 227.

    Google Scholar 

  88. Bacon, J.F., Hasapis, A.A., and Wholley, J.W., Phys. Chem. Glasses, 1960, vol. 1, no. 3, p. 90.

    Google Scholar 

  89. Ghiorso, M.S. and Kress, V.C., Am. J. Sci., 2004, vol. 304, p. 679.

    ADS  Google Scholar 

  90. Lascaris, E., Hammati, M., Buldyrev, S.V., Stanley, H.E., and Angell, C.A., J. Chem. Phys., 2014, vol. 140, no. 22, 224502.

    ADS  Google Scholar 

  91. Kanzaki, M., J. Am. Ceram. Soc., 1990, vol. 73, no. 12, p. 3706.

    Google Scholar 

  92. Belonoshko, A.B., Geochim. Cosmochim. Acta, 1994, vol. 58, no. 6, p. 1557.

    ADS  Google Scholar 

  93. Thomson, W., Proc. R. Soc. London, 1856–1857, vol. 8, p. 566.

    Google Scholar 

  94. Joul, J.P., Philos. Trans. R. Soc. London, 1859, vol. 149, p. 133.

    ADS  Google Scholar 

  95. Caldwell, R.D., Deep-Sea Res., 1978, vol. 25, p. 175.

    ADS  Google Scholar 

  96. Fortov, V.E. and Yakubov, I.T., Fizika neideal’noi plazmy (Physics of Nonideal Plasma), Chernogolovka, 1984.

  97. Radouski, H.B., Nellis, W.J., Ross, M., et al., Phys. Rev. Lett., 1986, vol. 57, p. 2419.

    ADS  Google Scholar 

  98. Yakub, L.N., J. Low Temp. Phys., 2001, vol. 122, nos. 3–4, p. 501.

    ADS  Google Scholar 

  99. Yakub, E.S. and Yakub, L.N., Fluid Phase Equilib., 2013, vol. 351, p. 43.

    Google Scholar 

  100. Yakub, L.N., Low Temp. Phys., 2016, vol. 42, p. 1.

    ADS  Google Scholar 

  101. Weck, G., Datchi, F., Garbarino, G., et al., Phys. Rev. Lett., 2017, vol. 119, no. 23, 235701.

    ADS  Google Scholar 

  102. Driver, K.P. and Militzer, B., Phys. Rev. B: Solid State, 2016, vol. 93, no. 13, 064101.

    ADS  Google Scholar 

  103. Fortov, V.E., Extreme States of Matter: High Energy Density Physics, New York: Springer, 2016, 2nd ed.

    MATH  Google Scholar 

  104. Nellis, W., Ultracondensed Matter by Dynamic Compression, New York: Cambridge Univ. Press, 2017.

    Google Scholar 

  105. Sharipdzhanov, I.I., Al’tshuler, L.V., and Brusnikin, S.E., Combust., Explos. Shock Waves (Engl. Transl.), 1983, vol. 19, no. 5, p. 668.

  106. Sharipdzhanov, I.I., Cand. Sci. (Phys.–Math.) Dissertation, Moscow: All-Russ. Res. Inst. Opt. Phys. Meas., 1976.

  107. Dunaeva, A.N., Antsyshkin, D.V., and Kuskov, O.L., Sol. Syst. Res., 2010, vol. 44, no. 3, p. 202.

    ADS  Google Scholar 

  108. Iosilevskiy, I., Entropic and enthalpic phase transitions in high energy density nuclear matter, in Proc. Compact Stars in the QCD Phase Diagram IV (CSQCD IV), Prerow, Germany, 2014. arXiv:1504.05850

  109. Kulyamina, E.Yu. and Erkinbaev, A.O., Nauchno-Tekh. Inf., Ser. 2: Inf. Protsessy Sist., 2019, no. 3, p. 25.

Download references

ACKNOWLEDGMENTS

I am grateful to colleagues E.Yu. Kulyamina and V.Yu. Zitserman for their help in preparation of this study.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 17-08-00736.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Fokin.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokin, L.R. Analysis of Data on Zero and Negative Thermal Expansion Coefficients of Materials. High Temp 58, 173–183 (2020). https://doi.org/10.1134/S0018151X20020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20020054

Navigation