Skip to main content
Log in

Unsteady Transverse Gas Injection in a Supersonic Nozzle Flow

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The gasdynamic processes accompanying the injection of a pulsed gas jet into the diffuser part of a nozzle are considered in relation to the formation of control forces in rocket engines. The gas flow through the injection nozzle is controlled by a rotary damper. The finite volume method and moving mesh technology are used to discretize the Reynolds-averaged Navier–Stokes equations and the equations of the SST turbulence model. The effect of the opening time of the damper on the dynamics of the formation of the control force, as well as the dependence of the traction and energy characteristics of the nozzle on the flow rate of the injected working fluid, are studied. The results of calculations within the non-steady-state and quasi-steady-state problem statement are compared. The formation of the shock wave and vortex structure of the flow is discussed. Conclusions are drawn about the effect of the input parameters of the problem on the coefficient of the traction change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Shishkov, A.A., Panin, S.D., and Rumyantsev, B.V., Rabochie protsessy v RDTT (Work Processes in Solid Propellant Rocket Engines), Moscow: Mashinostroenie, 1989.

  2. Organy upravleniya vektorom tyagi tverdotoplivnykh raket (Solid Propellant Rocket Thrust Vector Controls), Kuznetsov, N.P., Ed., Izhevsk: Regul. Khaotich. Din., 2006.

    Google Scholar 

  3. Kalugin, V.T., Aerogazodinamika organov upravleniya poletom letatel’nykh apparatov (Aerogasdynamics of Aircraft Flight Controls), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2004.

  4. Yagodnikov, D.A. and Rudinskii, A.V., High Temp., 2017, vol. 55, no. 5, p. 808.

    Article  Google Scholar 

  5. Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva (Gasdynamic and Thermophysical Processes in Solid Propellant Rocket Engines), Koroteev, A.S., Ed., Moscow: Mashinostroenie, 2004.

    Google Scholar 

  6. Savel’ev, S.K., Emel’yanov, V.N., and Benderskii, B.Ya., Eksperimental’nye metody issledovaniya gazodinamiki RDTT (Experimental Methods for Studying the Gas- dynamics of Solid Propellant Rocket Motors), St. Petersburg: Nedra, 2007.

  7. Volkov, K.N., Emel’yanov, V.N., and Yakovchuk, M.S., J. Appl. Mech. Tech. Phys., 2015, vol. 56, no. 5, p. 789.

    Article  ADS  Google Scholar 

  8. Forghany, F., Taeibe-Rahni, M., and Asadollahi-Ghohieh, A., J. Appl. Fluid Mech., 2017, vol. 10, no. 1, p. 157.

    Article  Google Scholar 

  9. Li, L.-Q., Huang, W., and Yan, L., Aerospace Sci. Technol., 2017, vol. 68, p. 77.

    Article  Google Scholar 

  10. Gaponov, S.A. and Terekhova, N.M., High Temp., 2017, vol. 55, no. 6, p. 898.

    Article  Google Scholar 

  11. Volkov, K.N., Emel’yanov, V.N., and Yakovchuk, M.S., J. Appl. Mech. Tech. Phys., 2017, vol. 58, no. 6, p. 1053.

    Article  ADS  Google Scholar 

  12. Noaman, H.R., Tang, H.B., and Khalil, E., Int. J. Aerospace Eng., 2019, no. 16, 7392497.

  13. Volkov, K.N., Emelyanov, V.N., and Yakovchuk, M.S., Tech. Phys., 2019, vol. 64, no. 3, p. 317.

    Article  Google Scholar 

  14. Domel, N.D., Baruzzini, D., and Miller, D.N., Pulsed injection flow control for throttling in supersonic nozzles: A computational fluid dynamics based performance correlation, AIAA Paper no. 2007-4214, 2007.

  15. Zmijanovic, V., Lago, V., Sellam, M., and Chpoun, A., Shock Waves, 2014, vol. 24, p. 97.

    Article  ADS  Google Scholar 

  16. Zmijanovic, V., Leger, L., and Depussay, E., J. Propul. Power, 2016, vol. 32, no. 1, p. 196.

    Article  Google Scholar 

  17. Wu, K. and Kim, H.D., Proc. Inst. Mech. Eng.,Part G, 2019, vol. 233, no. 13, p. 4943.

    Google Scholar 

  18. Volkov, K.N., Emel’yanov, V.N., and Yakovchuk, M.S., Vychisl. Metody Program., 2018, vol. 19, p. 158.

    Google Scholar 

  19. Bogdanoff, D.W., J. Propul. Power, 1994, vol. 10, no. 2, p. 183.

    Article  Google Scholar 

  20. Cutler, A.D., Harding, G.C., and Diskin, G.S., AIAA J., 2013, vol. 51, no. 4, p. 809.

    Article  ADS  Google Scholar 

  21. Randolph, H., Chew, L., and Johari, H., J. Propul. Power, 1994, vol. 10, no. 5, p. 746.

    Article  Google Scholar 

  22. Seiner, J.M., Dash, S.M., and Kenzakowski, D.C., J. Propul. Power, 2001, vol. 17, no. 6, p. 1273.

    Article  Google Scholar 

  23. Kouchi, T., Sasaya, K., Watanabe, J., Sibayama, H., and Masuya, G., Penetration characteristics of pulsed injection into supersonic crossflow, AIAA Paper no. 2010-6645, 2010.

  24. Cortelezzi, L. and Karagozian, A.R., J. Fluid Mech., 2001, vol. 446, p. 347.

    Article  ADS  MathSciNet  Google Scholar 

  25. M’Closkey, R.T., King, J.M., Cortelezzi, L., and Karagozian, A.R., J. Fluid Mech., 2002, vol. 452, p. 325.

    Article  ADS  Google Scholar 

  26. Coussement, A., Gicquel, O., Schuller, T., and Degrez, G., Large eddy simulation of pulsed jet in crossflow, AIAA Paper no. 2010-561, 2010.

  27. Génin, F. and Menon, S., J. Turbul., 2010, vol. 11, no. 4, art. no. 4.

    Article  ADS  Google Scholar 

  28. Erdem, E., Kontis, K., and Saravanan, S., Sensors, 2014, vol. 14, p. 23462.

    Article  Google Scholar 

  29. Johari, H., AIAA J., 2006, vol. 44, no. 11, p. 2719.

    Article  ADS  Google Scholar 

  30. Hsu, C.M. and Huang, R.F., J. Mech., 2014, vol. 30, p. 87.

    Article  Google Scholar 

  31. Golub, V.V. and Bazhenova, T.V., Impul’snye sverkhzvukovye struinye techeniya (Pulsed Supersonic Jet Flows), Moscow: Nauka, 2008.

  32. Walker, R.E., Stone, A.R., and Shandor, M., AIAA J., 1963, vol. 1, no. 2, p. 334.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Volkov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, K.N., Elemel’yanov, V.N. & Yakovchuk, M.S. Unsteady Transverse Gas Injection in a Supersonic Nozzle Flow. High Temp 58, 238–246 (2020). https://doi.org/10.1134/S0018151X20020212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20020212

Navigation