Skip to main content
Log in

Evaluation of Assouline–Or Adjusted Model to Express Soil Drainage Curve

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The objectives of this research are prediction of soil drainage curve using Assouline and Or (2014) adjusted soil drainage model and comparison of the predicted results with experimental data on small and large scales. This research is conducted for 18 small soil columns under different salinity level of irrigation water using different scenarios. In scenario A, water from saturated water and water of 0.1 (A-1) and 15 (A-2) bar matric head assumed as the mobile water, D, and input to Assouline and Or model to estimate weighted average of hydraulic conductivity, Km with fitting. In scenario B, Km is computed using water characteristic curve and D is obtained using fitted model. Finally, in scenario C, D and Km are predicted using fitted model. All experiments were repeated in the presence of plant for small soil columns and columns with 2.7 m depth as well. Results showed that the model prediction is influenced by irrigation water salinity, study time and depth scales. However, soil and water physical properties and their interactions can partially explain the results and the flexibility of Assouline and Or model is appropriate, we suspected to the validity of physical meaning of model parameters and, the certainty of model predictions for the field capacity, FC, concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. R. Allmaras, V. A. Fritz, F. L. Pfleger, and S. M. Copeland, “Impaired internal drainage and Aphanomyces euteiches root rot of pea caused by soil compaction in a fine-textured soil,” Soil Tillage Res. 70, 41–52 (2003). https://doi.org/10.1016/S0167-1987(02)00117-4

    Article  Google Scholar 

  2. A. Arbhabhiram and Z. U. Ahmed, “Approximate solutions for nonsteady column drainage,” Water Resour. Res. 9 (2), 401–407 (1973).https://doi.org/10.1029/WR009i002p00401

    Article  Google Scholar 

  3. S. Assouline and D. Or, “The concept of field capacity revisited: defining intrinsic static and dynamic criteria for soil internal drainage dynamics,” Water Resour. Res. 50, 4787–4802 (2014).https://doi.org/10.1002/2014WR015475

    Article  Google Scholar 

  4. A. T. P. Bennie, M. G. Strydom, and H. S. Vrey, The Use of Computer Models for Agricultural Water Management at Ecotope Level: WRC Report No. TT102/98 (Water Research Commission, Pretoria, 1998)

  5. M. Bizhanimanzar, R. Leconte, and M. Nuth, ‘‘Modeling of shallow water table dynamics using conceptual and physically based integrated surface-water-groundwater hydrologic models,” Hydrol. Earth Syst. Sci. 23 (5), 2245-2260 (2019). https://doi.org/10.5194/hess-23-2245-2019

    Article  Google Scholar 

  6. N. C. Brady and R. R. Weil, The Nature and Properties of Soils, 14th ed. (Prentice Hall, New Jersey, 2008), pp. 1–31.

    Google Scholar 

  7. V. Casulli and P. Zanolli, “A nested Newton-type algorithm for finite volume methods solving Richards’ equation in mixed form,” SIAM J. Sci. Comput. 32 (4), 2255–2273 (2010). https://doi.org/10.1137/100786320

    Article  Google Scholar 

  8. M. Chang, Forest Hydrology: An Introduction to Water and Forests (CRC Press, Boca Raton, FL, 2012). https://doi.org/10.1201/b13614

    Book  Google Scholar 

  9. T. P. Clement, W. R. Wise, and F. J. Molz, “A physically based, two-dimensional, finite-difference algorithm for modeling variably saturated flow,” J. Hydrol. 161 (1–4), 71–90 (1994). https://doi.org/10.1016/0022-1694(94)90121-X

    Article  Google Scholar 

  10. Z. T. Cong, H. F. Lü, and G. H. Ni, “A simplified dynamic method for field capacity estimation and its parameter analysis” Water Sci. Eng. 7 (4), 351–362 (2014).https://doi.org/10.3882/j.issn.1674-2370.2014.04.001

    Article  Google Scholar 

  11. W. R. Gardner, “Approximate solution of a non-steady-state drainage problem,” Soil Sci. Soc. Am. J. 26 (2), 129–132 (1962). https://doi.org/10.2136/sssaj1962.03615995002600020011x

    Article  Google Scholar 

  12. W. H. Green and G. A. Ampt, “Studies on soil physics,” J. Agric. Sci. 4 (1), 1–24 (1911). https://doi.org/10.1017/S0021859600001441

    Article  Google Scholar 

  13. D. Hillel, V. D. Krentos, and Y. Styllianou, “Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ,” Soil. Sci. 114 (5), 395–400 (1972).

    Article  Google Scholar 

  14. D. Hillel, Fundamentals of Soil Physics (Academic, New York, 1980).

    Google Scholar 

  15. D. Hillel, Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations (Elsevier, Amsterdam, 1998).

    Google Scholar 

  16. F. Hoogland, P. Lehmann, and D. Or, “The formation of viscous limited saturation zones behind rapid drainage fronts in porous media,” Water Resour. Res. 51 (12), 9862–9890 (2015).https://doi.org/10.1002/2015WR016980

    Article  Google Scholar 

  17. F. Hoogland, P. Lehmann, R. Mokso, and D. Or, “Drainage mechanisms in porous media: from piston-like invasion to formation of corner flow networks,” Water Resour. Res. 52 (11), 8413–8436 (2016).https://doi.org/10.1002/2016WR019299

    Article  Google Scholar 

  18. M. E. Jensen and R. J. Hanks, “Nonsteady-state drainage from porous media,” J. Irrig. Drain. Div., Am. Soc. Civ. Eng. 93 (3), 209–231 (1967).

    Google Scholar 

  19. G. Juncu, A. Nicola, and C. Popa, “Nonlinear multigrid methods for numerical solution of the unsaturated flow equation in two space dimensions,” Transp. Porous. Med. 83 (3), 637–652 (2010). https://doi.org/10.1007/s11242-009-9465-3

    Article  Google Scholar 

  20. S. Kale, “Estimating effects of drainage design parameters on crop yields under irrigated lands using DRAINMOD,” Sci. Res. Essays 6 (14), 2955–2963 (2011).

    Google Scholar 

  21. U. Kroszynski, “Flow in a vertical porous column drained at its bottom at constant flux,” J. Hydrol. 24 (1–2), 135–153 (1975).https://doi.org/10.1016/0022-1694(75)90147-X

    Article  Google Scholar 

  22. X. Kuang, J. J. Jiao, L. Wan, X. Wang, and D. Mao, “Air and water flows in a vertical sand column,” Water. Resour. Res. 47 (4), (2011).https://doi.org/10.1029/2009WR009030

  23. J. T. Ligon, H. P. Johnson, and D. Kirkham, “Unsteady-state drainage of fluid from a vertical column of porous material,” J. Geophys. Res. 67 (13), 5199–5204 (1962).https://doi.org/10.1029/JZ067i013p05199

    Article  Google Scholar 

  24. S. S. Mavimbela and L. D. van Rensburg, “In situ evaluation of internal drainage induplex soils of the Tukulu, Sepane and Swartland forms,” South Afr. J. Plant. Sci. 32 (4), 209–220 (2015).https://doi.org/10.1080/02571862.2015.1028488

    Article  Google Scholar 

  25. F. Meskini-Vishkaee, M. H. Mohammadi, M. R. Neyshabouri, and F. Shekari, “Evaluation of canola chlorophyll index and leaf nitrogen under wide range of soil moisture,” Int. Agrophys. 29 (1), 83–90 (2015). https://doi.org/10.1080/02571862.2015.1028488

    Article  Google Scholar 

  26. P. D. Meyer and G. W. Gee, “Flux-based estimation of field capacity,” J. Geotech. Geoenviron. Eng. 125 (7), 595–599 (1999).

    Article  Google Scholar 

  27. J. K. Mitchell and K. Soga, Fundamentals of Soil Behavior (Wiley, New York, 2005)

    Google Scholar 

  28. M. A. Montoro and F. M. Francisca, “Soil permeability controlled by particle–fluid interaction,” Geotech. Geol. Eng. 28 (6), 851–864 (2010).https://doi.org/10.1007/s10706-010-9348-y

    Article  Google Scholar 

  29. N. N. Nhlabatsi, PhD Thesis (University of the Free State, Bloemfontein, 2010).

  30. L. F. Ratliff, J. T. Ritchie, and D. K. Cassel, “Field measured limits of soil water availability as related to laboratory measured properties,” Soil Sci. Soc. Am. J. 47 (4), 770–775 (1983). https://doi.org/10.2136/sssaj1983.03615995004700040032x

    Article  Google Scholar 

  31. W. D. Reynolds, “An analytic description of field capacity and its application in crop production,” Geoderma 326, 56–67 (2018).https://doi.org/10.1016/j.geoderma.2018.04.007

    Article  Google Scholar 

  32. L. A. Richards, “Capillary conduction of liquids through porous mediums,” Physics 1 (5), 318–333 (1931).https://doi.org/10.1063/1.1745010

    Article  Google Scholar 

  33. L. R. Stone, N. L. Klocke, A. J. Schelegel, F. R. Lamm, and D. J. Tomsicek, “Equations for drainage component of the field water balance,” Appl. Eng. Agric. 27 (3), 345–350 (2011).

    Article  Google Scholar 

  34. M. T. van Genuchten, “A closed form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Sci. Soc. Am. J. 44 (5), 892–898 (1980).

    Article  Google Scholar 

  35. M. T. van Genuchten, F. J. Leij and S. R. Yates, The RETC Code for Quantifying Hydraulic Functions of Unsaturated Soils (US Environmental Protection Agency, Washington, DC, 1991).

    Google Scholar 

  36. Q. D. J. van Lier, “Field capacity, a valid upper limit of crop available water?” Agric. Water Manage. 193, 214–220 (2017).https://doi.org/10.1016/j.agwat.2017.08.017

    Article  Google Scholar 

  37. Q. D. J. van Lier and O. Wendroth, “Reexamination of the field capacity concept in a Brazilian Oxisol,” Soil Sci. Soc. Am. J. 80 (2), 264–274 (2016). https://doi.org/10.2136/sssaj2015.01.0035

    Article  Google Scholar 

  38. F. J. Veihmeyer and A. H. Hendrickson, “The moisture equivalent as a measure of the field capacity of soils,” Soil Sci. 32 (3), 181–194 (1931).

    Article  Google Scholar 

  39. A. D. Ward and S. W. Trimble, Environmental Hydrology 2nd ed. (CRC Press, Boca Raton, FL, 2003)

    Google Scholar 

  40. F. D. Whisler and H. Bouwer, “Comparison of methods for calculating vertical drainage and infiltration for soils,” J. Hydrol. 10 (1), 1–19 (1970). https://doi.org/10.1016/0022-1694(70)90051-X

    Article  Google Scholar 

  41. E. G. Youngs, “The drainage of liquids from porous materials,” J. Geophys. Res. 65 (12), 4025–4030 (1960).https://doi.org/10.1029/JZ065i012p04025

    Article  Google Scholar 

  42. E. G. Youngs and S. Aggelides, “Drainage to a water table analyzed by the Green-Ampt approach,” J. Hydrol. 31 (1–2), 67–79 (1976). https://doi.org/10.1016/0022-1694(76)90021-4

    Article  Google Scholar 

  43. Z. Zhao, D. A. MacLean, C. P. A. Bourque, D. E. Swift, and F. R. Meng, “Generation of soil drainage equations from an artificial neural network-analysis approach,” Can. J. Soil Sci. 93 (3), 329–342 (2013).https://doi.org/10.4141/cjss2012-079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Asadi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, Z., Mohammadi, M.H., Shorafa, M. et al. Evaluation of Assouline–Or Adjusted Model to Express Soil Drainage Curve. Eurasian Soil Sc. 53, 749–759 (2020). https://doi.org/10.1134/S1064229320060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320060022

Keywords:

Navigation