Skip to main content
Log in

Use of Projective Coordinate Descent in the Fekete Problem

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The problem of minimizing the energy of a system of \(N\) points on a sphere in \({{\mathbb{R}}^{3}}\), interacting with the potential \(U = \tfrac{1}{{{{r}^{s}}}}\), \(s > 0\), where \(r\) is the Euclidean distance between a pair of points, is considered. A method of projective coordinate descent using a fast calculation of the function and the gradient, as well as a second-order coordinate descent method that rapidly approaches the minimum values known from the literature is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. Fekete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzagligen Koeffizienten,” Math. Z. 17, 228–249 (1923).

    Article  MathSciNet  Google Scholar 

  2. J. J. Thomson, “On the structure of the atom: An investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure,” London Edinburgh Dublin Philos. Mag. J. Sci. 7, 237–265 (1904).

    Article  Google Scholar 

  3. S. Smale, “Mathematical problems for the next century,” Math. Intelligencer 20, 7–15 (1998).

    Article  MathSciNet  Google Scholar 

  4. M. Robinson, I. Suarez-Martinez, and N. A. Marks, “Generalized method for constructing the atomic coordinates of nanotube caps,” Phys. Rev. B 87 (15), 155430 (2013).

    Article  Google Scholar 

  5. M. Patra, M. Patriarca, and M. Karttunen, “Stability of charge inversion, Thomson problem, and application to electrophoresis,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 67, 031402 (2003).

    Article  Google Scholar 

  6. D. Caspar and A. Klug, “Physical principles in the construction of regular viruses,” Cold Spring Harbor Symposia on Quantitative Biology (1962), Vol. 27, pp. 1–24.

    Article  Google Scholar 

  7. E. Arias, E. Florez, and J. F. Pérez-Torres, “Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters,” J. Chem. Phys. D 146, 244107 (2017).

    Article  Google Scholar 

  8. Y. Xiang et al., “Generalized simulated annealing for global optimization: The GenSA package,” R Journal 5 (1), 13–28 (2013).

    Article  Google Scholar 

  9. P. A. Yakovlev et al., “Algorithms for local minimization of the force field for three-dimensional macromolecules” (2018). arXiv:1810.03358v2

  10. E. L. Altschuler and A. Pérez-Carrido, “New global minima for Thomson’s problem of charges on a sphere” (2004). arXiv:cond-mat/0408355

  11. D. J. Waves, H. McKay, and E. L. Altschuler, “Defect motifs for spherical topologies,” Phys. Rev. B 79 (22), 224115 (2009).

    Article  Google Scholar 

  12. T. LaFave, Jr., “Discrete transformations in the Thomson problem,” J. Electrost. 72, 39–43 (2014).

    Article  Google Scholar 

  13. J. W. Ridgway and A. F. Cheviakov, “An iterative procedure for finding locally and globally optimal arrangements of particles on the unit sphere,” Comput. Phys. Commun. 233, 84–109 (2018).

    Article  Google Scholar 

  14. H. Lakhbab, S. EL Bernoussi, and A. EL Harif, “Energy minimization of point charges on a sphere with a spectral projected gradient method,” Int. J. Sci. Eng. Res. 3 (5) (2012).

  15. J. K. Nurmela, Constructing Spherical Codes by Global Optimization Methods (1995).

  16. E. Bendito et al., “Estimation of Fekete points,” J. Comput. Phys. 225, 2354–2376 (2007).

    Article  MathSciNet  Google Scholar 

  17. B. T. Polyak, M. V. Balashov, and A. A. Tremba, “Gradient projection and conditional gradient methods for constrained nonconvex minimization,” ArXiv: 1906.11580.2019.

  18. D. C. Liu and J. Nocedal, “On the limited memory BFGS Method for large scale optimization,” Math. Program. 45, 503–528 (1989).

    Article  MathSciNet  Google Scholar 

  19. H. R. Byrd et al., “A stochastic quasi-Newton method for large-scale optimization,” SIAM J. Optim. 26, 1008–1031 (2014).

  20. M. Mutny and P. Richtarik, “Parallel stochastic Newton method,” J. Comput. Math. 36, 404 (2018).

    Article  MathSciNet  Google Scholar 

  21. N. Doikov and P. Richtarik, “Randomized block cubic Newton method,” Proceedings of the 35th International Conference on Machine Learning (Univ. Edinburgh, Edinburgh, 2018), pp. 1290–1298.

  22. A. Yershova and S. M. LaValle, “Deterministic sampling methods for spheres and SO(3),” Proceedings of IEEE International Conference on Robotics and Automation (2003), Vol. 2004.

  23. E. B. Saff and A. B. J. Kuijlaars, “Distributing many points on a sphere,” Math. Intelligencer 19, 5–11 (1997).

    Article  MathSciNet  Google Scholar 

  24. A. Yershova, S. M. LaValle, and J. C. Mitchell, “Generating uniform incremental grids on SO(3) using the Hopf fibration,” Algorithmic Foundation of Robotics VIII: Selected Contributions of the Eight International Workshop on the Algorithmic Foundations of Robotics, Ed. by G. S. Chirikjian et al. (Springer, Berlin, 2010), pp. 385–399.

  25. E. Rakhmanov, B. E. Saff, and M. Y. Zhou, “Minimal discrete energy on the sphere,” Math. Res. Lett. 1, 647–662 (1994).

    Article  MathSciNet  Google Scholar 

  26. S. J. Wright, “Coordinate descent algorithms,” Math. Programming 151, 3–34 (2015).

    Article  MathSciNet  Google Scholar 

  27. D. Wales and S. Ulker, “Structure and dynamics of spherical crystals characterized for the Thomson problem,” Phys. Rev. B 74, 212101 (2006).

    Article  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation, project no. 16-11-10015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. T. Polyak or I. F. Fatkhullin.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyak, B.T., Fatkhullin, I.F. Use of Projective Coordinate Descent in the Fekete Problem. Comput. Math. and Math. Phys. 60, 795–807 (2020). https://doi.org/10.1134/S0965542520050127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520050127

Keywords:

Navigation