Skip to main content
Log in

Soluble Polyimide-reinforced TGDDM and DGEBA Epoxy Composites

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyimide (PI) synthesized from aromatic diamine and dianhydrides via two-step poly-condensation method was highly soluble in TGDDM (MY-720) and DGEBA (E-51) at desirable temperature. TGDDM-PI (M-PI) and DGEBA-PI (E-PI) composites within 0.5%-3% PI loading could be prepared without organic solvent. On the cryogenically fractured surfaces of M-PI and E-PI composites, no obvious heterogeneous phase was observed by SEM. The mechanical properties were promoted significantly by PI, especially for impact strength. Adding 2% PI-2W into MY-720 and E-51 composites, the impact strength increased to 21 and 51 kJ/m2, the tensile strength increased by 62% and 19%, and the flexural strength by 18% and 13%, respectively, with slight increases in tensile modulus. These results were related to the promotion in plasticity of composites and changes in fragile→ductile fracture mode. Moreover, Tg and thermal stability of M-PI and E-PI were increased effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, W.; Zhang, M. Q.; Yu, J.; Nie, S. Q.; Zhang, D. Q.; Qin, S. H. Synergistic flame-retardant effect of epoxy resin combined with phenethyl-bridged DOPO derivative and graphene nanosheets. Chinese J. Polym. Sci.2019, 37, 79–88.

    Article  CAS  Google Scholar 

  2. Hu, Z.; Zhang, D. Y.; Lu, F.; Yuan, W. H.; Xu, X. R.; Zhang, Q.; Liu, H.; Shao Q.; Guo, Z. H.; Huang, Y. D. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host-guest interactions. Macromolecules2018, 51, 5294–5303.

    Article  CAS  Google Scholar 

  3. Han, X.; Wang, T.; Owuor, P. S.; Hwang, S. H.; Wang, C.; Sha, J. W.; Shen, L. L.; Yoon, J. W.; Wang, W. P.; Salvatieera, R. V.; Ajayan, P. M.; Shahsavari, R.; Lou, J.; Zhao, Y.; Tour, J. M. Ultra-stiff graphene foams as three-dimensional conductive fillers for epoxy resin. ACS Nano2018, 12, 11219–11228.

    Article  CAS  Google Scholar 

  4. Chen, B.; Chen, J.; Li, J. Y.; Zhao, H. C.; Wang, L. P. Oligoaniline assisted dispersion of carbon nanotubes in epoxy matrix for achieving the nanocomposites with enhanced mechanical, thermal and tribological properties. Chinese J. Polym. Sci. 2017, 35, 446–454.

    Article  CAS  Google Scholar 

  5. Sahu, M.; Raichur, A. M. Toughening of high performance tetrafunctional epoxy with poly(allyl amine) grafted graphene oxide. Compos. Part B-Eng.2019, 168, 15–24.

    Article  CAS  Google Scholar 

  6. Tsang, W. L.; Taylor, A. C. Fracture and toughening mechanisms of silica-and core-shell rubber-toughened epoxy at ambient and low temperature. J. Mater. Sci.2019, 54, 13938–13958.

    Article  CAS  Google Scholar 

  7. Eksik, O.; Gao, J.; Shojaee, S. A.; Tomas, A.; Chow, P.; Bartolucci, S. F.; Lucca, D. A.; Koratkar, N. Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives. ACS Nano2014, 8, 5282–5289.

    Article  CAS  Google Scholar 

  8. Chen, J.; Nie, X. A.; Liu, Z. S.; Mi, Z.; Zhou, Y. H. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin. ACS Sustain. Chem. Eng.2015, 3, 1164–1171.

    Article  CAS  Google Scholar 

  9. Lakshmi, M. S.; Narmadha, B.; Reddy, B. S. R. Enhanced thermal stability and structural characteristics of different MMT-clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 2008, 93, 201–213.

    Article  CAS  Google Scholar 

  10. Zhang, Y.; Shang, C. Y.; Yang, X.; Zhao, X. J.; Huang, W. Morphology and properties of TGDDM/DDS epoxy systems toughened by amino-bearing phenyl silicone resins. J. Mater. Sci.2012, 47, 4415–4427.

    Article  CAS  Google Scholar 

  11. Cheng, X. L; Wu, Q.; Morgan, S. E.; Wiggins, J. S. Morphologies and mechanical properties of polyethersulfone modified epoxy blends through multifunctional epoxy composition. J. Appl. Polym. Sci.2017, 134, 44775.

    Google Scholar 

  12. Tian, H. Y.; Liu, Z. G.; Zhang, M.; Guo, Y. L., Zheng, L; Li, Y. C. Biobased polyurethane, epoxy resin, and polyolefin wax composite coating for controlled-release fertilizer. ACS Appl. Mater. Interfaces2019, 11, 5380–5392.

    Article  CAS  Google Scholar 

  13. Lee, C. H.; Chen, S. H.; Wang, Y. Z.; Lin, C. C. Huang, C. K.; Chuang, C. N.; Wang, C. K.; Hsieh, K. H. Preparation and characterization of proton exchange membranes based on semi-interpenetrating sulfonated poly(imide-siloxane)/epoxy polymer networks. Energy2013, 55, 905–915.

    Article  CAS  Google Scholar 

  14. He, X.; Liu, Y.; Zhang, R. C. Wu, Q.; Chen, T. H.; Sun, P. C. Wang, X. L.; Xue, G. Unique interphase and cross-linked network controlled by different miscible blocks in nanostructured epoxy/block copolymer blends characterized by solid-state NMR. J. Phys. Chem. C2014, 118, 13285–13299.

    Article  CAS  Google Scholar 

  15. Lin, L; Deng, C; Lin, G. P.; Wang, Y. Z. Super toughened and high heat-resistant poly(lactic acid) (PLA)-based blends by enhancing interfacial bonding and PLA phase crystallization. Ind. Eng. Chem. Res.2015, 54, 5643–5655.

    Article  CAS  Google Scholar 

  16. Vu, M. C; Bach, Q. V.; Nguyen, D. D.; Tran, T. S.; Goodarzi, M. 3D interconnected structure of poly(methyl methacrylate) microbeads coated with copper nanoparticles for highly thermal conductive epoxy composites. Compos. Part B-Eng. 2019, 175 107105.

    Article  CAS  Google Scholar 

  17. Ma, H.; Aravand, M. A.; Falzon, B. G. Phase morphology and mechanical properties of polyetherimide modified epoxy resins: a comparative study. Polymer2019, 179, 121640.

    Article  CAS  Google Scholar 

  18. Francis, B.; Thomas, S.; Jose, J.; Ramaswamy, R.; Rao, V. L Hydroxyl terminated poly(ether ether ketone) with pendent methyl group toughened epoxy resin: miscibility, morphology and mechanical properties. Polymer2005, 46, 12372–12385.

    Article  CAS  Google Scholar 

  19. Yuan, W.; Feng, J. L.; Judeh, Z.; Dai, J.; Chan-Park, M. B. Use of polyimide-graft-bisphenol a diglyceryl acrylate as a reactive noncovalent dispersant of single-walled carbon nanotubes for reinforcement of cyanate ester/epoxy composite. Chem. Mater. 2010, 22, 6542–6554.

    Article  CAS  Google Scholar 

  20. Jena, R. K.; Yue, C. Y.; Sk, M. M.; Ghosh, K. A novel high performance bismaleimide/diallyl bisphenol A (BMI/DBA)-epoxy interpenetrating network resin for rigid riser application. RSC Adv.2015, 5, 79888–79897.

    Article  CAS  Google Scholar 

  21. Liu, Y. W.; Tang, L S.; Qu, L. J.; Liu, S. W.; Chi, Z. G.; Zhang, Y.; Xu, J. R. Synthesis and properties of high performance functional polyimides containing rigid nonplanar conjugated fluorene moieties. Chinese J. Polym. Sci.2019, 37, 416–427.

    Article  CAS  Google Scholar 

  22. Que, X. F.; Yan, Y. R.; Qiu, Z. M.; Wang, Y. Synthesis and characterization of trifluoromethyl-containing polyimide-modified epoxy resins. J. Mater. Sci.2016, 51, 10833–10848.

    Article  CAS  Google Scholar 

  23. Zhao, Q.; Wang, X. Y.; Hu, Y. H. The application of highly soluble amine-terminated aromatic polyimides with pendent tert-butyl groups as a tougher for epoxy resin. Chinese J. Polym. Sci. 2015, 33, 1359–1372.

    Article  CAS  Google Scholar 

  24. Guan, Y.; Wang, D. M.; Song, G. L. Dang, G. D.; Chen, C. H.; Zhou, H. W.; Zhao, X. G. Novel soluble polyimides derived from 2,2′-bis[4-(5-amino-2-pyridinoxy) phenyl] hexafluoropropane: preparation, characterization, and optical, dielectric properties. Polymer2014, 55, 3634–3641.

    Article  CAS  Google Scholar 

  25. Tang, X. L.; Li, L.; Zhao, L.; Zhang, H. D.; Wu, P. Y. Using two-dimensional time resolved light scattering to study the cure reaction induced phase separation process of epoxy-amine-polyethersulfone blend with secondary phase separation. Chinese J. Polym. Sci.2010, 28, 63–68.

    Article  CAS  Google Scholar 

  26. Builes, D. H.; Tercjak, A.; Mondragon, I. Nanostructured unsaturated polyester modified with poly[(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)] triblock copolymer. Polymer2012, 53, 3669–3676.

    Article  CAS  Google Scholar 

  27. Wang, C. Y.; Chen, W. T.; Xu, C.; Zhao, X. Y.; Li, J. Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric constant. Chinese J. Polym. Sci.2016, 34, 1363–1372.

    Article  CAS  Google Scholar 

  28. Liu, W. S.; Kong, J. H.; Eric, Toh W. L.; Zhou, R.; Ding, G. Q.; Huang, S.; Dong, Y. L.; Lu, X. H. Toughening of epoxies by covalently anchoring triazole-functionalized stacked-cup carbon nanofibers. Compos. Sci. Technol.2013, 85, 1–9.

    Article  CAS  Google Scholar 

  29. Lei, L. Q.; Shan, J. Y.; Hu, J. H.; Liu, X. X.; Zhao, J. Q.; Tong, Z. Co-curing effect of imidazole grafting graphene oxide synthesized by one-pot method to reinforce epoxy nanocomposites. Compos. Sci. Technol.2016, 128, 161–168.

    Article  CAS  Google Scholar 

  30. Gantayat, S.; Rout, D.; Swain, S. K. Mechanical properties of functionalized multiwalled carbon nanotube/epoxy nanocomposites. Mater. Today-Proc.2017, 4, 4061–4064.

    Article  Google Scholar 

  31. Saleh, A. B. B.; Ishak, Z. A. M.; Hashim, A. S.; Kamil, W. A.; Ishiaku, U. S. Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Physcs. Proc.2014, 55, 129–137.

    Article  CAS  Google Scholar 

  32. Wu, F.; Song, B.; Hah, J.; Tuan, C. C.; Moon, K. S.; Wong, C. P. Polyimide incorporated cyanate ester/epoxy copolymers for high-temperature molding compounds. J. Polym. Sci., Part A: Polym. Chem.2018, 56, 2412–2421.

    Article  CAS  Google Scholar 

  33. Deepak, P.; Kumar, R. V.; Badrinarayanan, S.; Sivaraman, H.; Vimal, R. Effects of polyamide and/or phenalkamine curing agents on the jute fibre reinforcement with epoxy resin matrix. Mater. Today-Proc.2017, 4, 2841–2850.

    Article  Google Scholar 

  34. Palmeri, M. J.; Putz, K. W.; Brinson, L. C. Sacrificial bonds in stacked-cup carbon nanofibers: biomimetic toughening mechanisms for composite systems. ACS Nano2010, 4, 4256–4264.

    Article  CAS  Google Scholar 

  35. Tang, L. C.; Zhang, H.; Sprenger, S.; Ye, L.; Zhang, Z. Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles. Compos. Sci. Technol.2012, 72, 558–565.

    Article  CAS  Google Scholar 

  36. Kang, W. S.; Rhee, K. Y.; Park, S. J. Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites. Compos. Part B-Eng.2016, 94, 238–244.

    Article  CAS  Google Scholar 

  37. Huang, W.; Yan, D. Y.; Lu, Q. H.; Tao, B. Preparation of aromatic polyimides highly soluble in conventional solvents. J. Polym. Sci., Part A: Polym. Chem.2002, 40, 229–234.

    Article  CAS  Google Scholar 

  38. Sun, G. H.; Liu, L. H.; Wang, J.; Wang, H. L.; Wang, W. P.; Han, S. H. Effects of hydrotalcites and tris(1-chloro-2-propyl) phosphate on thermal stability, cellular structure and fire resistance of isocyanate-based polyimide foams. Polym. Degrad. Stab. 2015, 115, 1–15.

    Article  CAS  Google Scholar 

  39. Xiang, A. M.; Li, Y.; Fu, L.; Chen, Y. J.; Tian, H. F.; Rajulu, A. V. Thermal degradation and flame retardant properties of isocyanate-based flexible polyimide foams with different isocyanate indices. Thermochim. Acta2017, 652, 160–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300) and the National Natural Science Foundation of China (Nos. 21777043 and 21976056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Yi Wang or Yan-Hong Hu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, S., Qin, F. et al. Soluble Polyimide-reinforced TGDDM and DGEBA Epoxy Composites. Chin J Polym Sci 38, 867–876 (2020). https://doi.org/10.1007/s10118-020-2395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2395-9

Keywords

Navigation