Skip to main content
Log in

Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, wide bandgap (WBG) two-dimensional (2D) copolymer donors (DZ1, DZ2, and DZ3) based on benzodithiophene (BDT) on alkoxyphenyl conjugated side chains without and with different amounts of chlorine atoms and difluorobenzotriazole (FBTZ) are designed and synthesized successfully for efficient non-fullerene polymer solar cells (PSCs). Three polymer donors DZ1, DZ2, and DZ3 display similar absorption spectra at 300–700 nm range with optional band-gap (Egopt) of 1.84, 1.92, and 1.97 eV, respectively. Compared with reported DZ1 without chlorine substitution, it is found that introducing chlorine atoms into the meta-position of the alkoxyphenyl group affords polymer possessing a deeper the highest occupied molecular orbital (HOMO) energy level, which can increase open circuit voltage (VOC) of PSCs, as well as improve hole mobility. Non-fullerene bulk heterojunction PSCs based on DZ2:MeIC demonstrate a relatively high power conversion efficiency (PCE) of 10.22% with a VOC of 0.88 V, a short-circuit current density (JSC) of 17.62 mA/cm2, and a fill factor (FF) of 68%, compared with PSCs based on DZ1:MeIC (a PCE of 8.26%) and DZ3:MeIC (a PCE of 6.28%). The results imply that adjusting chlorine atom amount on alkoxyphenyl side chains based on BDT polymer donors is a promising approach of synthesizing electron-rich building block for high performance of PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res.2012, 45, 723–733.

    Article  CAS  PubMed  Google Scholar 

  2. Guo, X.; Facchetti, A.; Marks, T. J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev.2014, 114, 8943–9021.

    Article  CAS  PubMed  Google Scholar 

  3. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater.2018, 3, 18003.

    Article  CAS  Google Scholar 

  4. Liu, T.; Zhang, Y.; Shao, Y.; Ma, R.; Luo, Z.; Xiao, Y.; Yang, T.; Lu, X.; Yuan, Z.; Yan, H.; Chen, Y.; Li, Y. Asymmetric acceptors with fluorine and chlorine substitution for organic solar cells toward 16.83% efficiency. Adv. Funct. Mater.2020, 32, 2000456.

    Article  CAS  Google Scholar 

  5. Cui, C.; Li, Y. High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy Environ. Sci.2019, 12, 3225–3246.

    Article  CAS  Google Scholar 

  6. Genene, Z.; Mammo, W.; Wang, E.; Andersson, M. R. Recent advances in n-type polymers for all-polymer solar cells. Adv. Mater.2019, 31, 1807275.

    Article  CAS  Google Scholar 

  7. Luo, Z.; Liu, T.; Chen, Z.; Xiao, Y.; Zhang, G.; Huo, L.; Zhong, C.; Lu, X.; Yan, H.; Sun, Y.; Yang, C. Isomerization of perylene diimide based acceptors enabling high-performance nonfullerene organic solar cells with excellent fill factor. Adv. Sci.2019, 6, 1802065.

    Article  CAS  Google Scholar 

  8. Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater.2018, 17, 119–128.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, C.; Wang, J.; Jiao, J.; Huang, L.; Tang, J. Recent advances of polymer acceptors for high-performance organic solar cells. J. Mater. Chem. C2020, 8, 28–43.

    Article  CAS  Google Scholar 

  10. Liu, T.; Xue, X.; Huo, L.; Sun, X.; An, Q.; Zhang, F.; Russell, T. P.; Liu, F.; Sun, Y. Highly efficient parallel-like ternary organic solar cells. Chem. Mater.2017, 29, 2914–2920.

    Article  CAS  Google Scholar 

  11. Ma, R.; Chen, Y.; Liu, T.; Xiao, Y.; Luo, Z.; Zhang, M.; Luo, S.; Lu, X.; Zhang, G.; Li, Y.; Yan, H.; Chen, K. Improving the performance of near infrared binary polymer solar cells by adding a second nonfullerene intermediate band-gap acceptor. J. Mater. Chem. C2020, 8, 909–915.

    Article  CAS  Google Scholar 

  12. Huang, C.; Liao, X.; Gao, K.; Zuo, L.; Lin, F.; Shi, X.; Li, C. Z.; Liu, H.; Li, X.; Liu, F.; Chen, Y.; Chen, H.; Jen, A. K. Y. Highly efficient organic solar cells based on S, N-heteroacene non-fullerene acceptors. Chem. Mater.2018, 30, 5429–5434.

    Article  CAS  Google Scholar 

  13. Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; Emmott, C. J. M.; Nelson, J.; Brabec, C. J.; Amassian, A.; Salleo, A.; Kirchartz, T.; Durrant, J. R.; McCulloch, I. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater.2017, 16, 363–369.

    Article  CAS  PubMed  Google Scholar 

  14. He, Q.; Shahid, M.; Wu, J.; Jiao, X.; Eisner, F. D.; Hodsden, T.; Fei, Z.; Anthopoulos, T. D.; McNeill, C. R.; Durrant, J. R.; Heeney, M. Fused cyclopentadithienothiophene acceptor enables ultrahigh short-circuit current and high efficiency >11% in as-cast organic solar cells. Adv. Funct. Mater.2019, 29, 1904956.

    Article  CAS  Google Scholar 

  15. Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun.2019, 10, 2152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y. Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency >10%. Adv. Mater.2016, 28, 10008–10015.

    Article  CAS  PubMed  Google Scholar 

  17. Feng, H.; Yi, Y. Q. Q.; Ke, X.; Yan, J.; Zhang, Y.; Wan, X.; Li, C.; Zheng, N.; Xie, Z.; Chen, Y. New anthracene-fused nonfullerene acceptors for high-efficiency organic solar cells: energy level modulations enabling match of donor and acceptor. Adv. Energy Mater.2019, 9, 1803541.

    Article  CAS  Google Scholar 

  18. Zhang, B.; Yu, Y.; Zhou, J.; Wang, Z.; Tang, H.; Xie, S.; Xie, Z.; Hu, L.; Yip, H. L.; Ye, L.; Ade, H.; Liu, Z.; He, Z.; Duan, C.; Huang, F.; Cao, Y. 3,4-Dicyanothiophene—a versatile building block for efficient nonfullerene polymer solar cells. Adv. Energy Mater.2020, 1904247.

    Chapter  Google Scholar 

  19. Li, J.; Liang, Z.; Li, X.; Li, H.; Wang, Y.; Qin, J.; Tong, J.; Yan, L.; Bao, X.; Xia, Y. Insights into excitonic dynamics of terpolymer-based high-efficiency nonfullerene polymer solar cells: enhancing the yield of charge separation states. ACS Appl. Mater. Interfaces2020, 12, 8475–8484.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, T.; Luo, Z.; Fan, Q.; Zhang, G.; Zhang, L.; Gao, W.; Guo, X.; Ma, W.; Zhang, M.; Yang, C.; Li, Y.; Yan, H. Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy Environ. Sci.2018, 11, 3275–3282.

    Article  CAS  Google Scholar 

  21. Li, J.; Wang, Y.; Liang, Z.; Qin, J.; Ren, M.; Tong, J.; Yang, C.; Yang, C.; Bao, X.; Xia, Y. Non-toxic green food additive enables efficient polymer solar cells through adjusting the phase composition distribution and boosting charge transport. J. Mater. Chem. C2020, 8, 2483–2490.

    Article  CAS  Google Scholar 

  22. Sun, H.; Liu, T.; Yu, J.; Lau, T. K.; Zhang, G.; Zhang, Y.; Su, M.; Tang, Y.; Ma, R.; Liu, B.; Liang, J.; Feng, K.; Lu, X.; Guo, X.; Gao, F.; Yan, H. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy Environ. Sci.2019, 12, 3328–3337.

    Article  CAS  Google Scholar 

  23. Chao, P.; Chen, H.; Zhu, Y.; Lai, H.; Mo, D.; Zheng, N.; Chang, X.; Meng, H.; He, F. A benzo[1,2-b:4,5-c′]dithiophene-4,8-dione-based polymer donor achieving an efficiency over 16%. Adv. Mater.2020, 1907059.

    Google Scholar 

  24. Liu, T.; Luo, Z.; Chen, Y.; Yang, T.; Xiao, Y.; Zhang, G.; Ma, R.; Lu, X.; Zhan, C.; Zhang, M.; Yang, C.; Li, Y.; Yao, J.; Yan, H. A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy Environ. Sci.2019, 12, 2529–2536.

    Article  CAS  Google Scholar 

  25. Li, G.; Yang, W.; Wang, S.; Liu, T.; Yan, C.; Li, G.; Zhang, Y.; Li, D.; Wang, X.; Hao, P.; Li, J.; Huo, L.; Yan, H.; Tang, B. Methaneperylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. J. Mater. Chem. C2019, 7, 10901–10907.

    Article  CAS  Google Scholar 

  26. Liao, Q.; Sun, H.; Li, B.; Guo, X. 26 mA cm−2JSC achieved in the integrated solar cells. Sci. Bull.2019, 64, 1747–1749.

    Article  CAS  Google Scholar 

  27. Zhang, Y.; Guo, X.; Guo, B.; Su, W.; Zhang, M.; Li, Y. Nonfullerene polymer solar cells based on a perylene monoimide acceptor with a high open-circuit voltage of 1.3 V. Adv. Funct. Mater.2017, 27, 1603892.

    Article  CAS  Google Scholar 

  28. Luo, Z.; Sun, R.; Zhong, C.; Liu, T.; Zhang, G.; Zou, Y.; Jiao, X.; Min, J.; Yang, C. Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Sci. China Chem.2020, 63, 361–369.

    Article  CAS  Google Scholar 

  29. An, Q.; Zhang, J.; Gao, W.; Qi, F.; Zhang, M.; Ma, X.; Yang, C.; Huo, L.; Zhang, F. Efficient ternary organic solar cells with two compatible non-fullerene materials as one alloyed acceptor. Small2018, 14, 1802983.

    Article  CAS  Google Scholar 

  30. Chen, H.; Hu, D.; Yang, Q.; Gao, J.; Fu, J.; Yang, K.; He, H.; Chen, S.; Kan, Z.; Duan, T.; Yang, C.; Ouyang, J.; Xiao, Z.; Sun, K.; Lu, S. All-small-molecule organic solar cells with an ordered liquid crystalline donor. Joule2019, 3, 3034–3047.

    Article  CAS  Google Scholar 

  31. Luo, Z.; Liu, T.; Xiao, Y.; Yang, T.; Chen, Z.; Zhang, G.; Zhong, C.; Ma, R.; Chen, Y.; Zou, Y. Significantly improving the performance of polymer solar cells by the isomeric ending-group based small molecular acceptors: insight into the isomerization. Nano Energy2019, 66, 104146.

    Article  CAS  Google Scholar 

  32. Feng, L.; Yuan, J.; Zhang, Z.; Peng, H.; Zhang, Z. G.; Xu, S.; Liu, Y.; Li, Y.; Zou, Y. Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl. Mater. Interfaces2017, 9, 31985–31992.

    Article  CAS  PubMed  Google Scholar 

  33. Brus, V. V.; Lee, J.; Luginbuhl, B. R.; Ko, S. J.; Bazan, G. C.; Nguyen, T. Q. Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater.2019, 31, 1900904.

    Article  CAS  Google Scholar 

  34. Chen, S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J.; Oh, J.; Cho, Y.; Kim, H.; Lee, B.; An, Y.; Zhang, C.; Xiao, M.; Ki, H.; Zhang, Z. G.; Kim, J. Y.; Li, Y.; Park, H.; Yang, C. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices. Angew. Chem. Int. Ed.2018, 57, 13277–13282.

    Article  CAS  Google Scholar 

  35. Fan, Q.; Su, W.; Chen, S.; Kim, W.; Chen, X.; Lee, B.; Liu, T.; Méndez-Romero, U. A.; Ma, R.; Yang, T.; Zhuang, W.; Li, Y.; Li, Y.; Kim, T. S.; Hou, L.; Yang, C.; Yan, H.; Yu, D.; Wang, E. Mechanically robust all-polymer solar cells from narrow band gap acceptors with heterobridging atoms. Joule2020, 4, 658–672.

    Article  CAS  Google Scholar 

  36. Xia, R.; Brabec, C. J.; Yip, H. L.; Cao, Y. High-throughput optical screening for efficient semitransparent organic solar cells. Joule2019, 3, 2241–2254.

    Article  CAS  Google Scholar 

  37. Du, X.; Heumueller, T.; Gruber, W.; Classen, A.; Unruh, T.; Li, N.; Brabec, C. J. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule2019, 3, 215–226.

    Article  CAS  Google Scholar 

  38. Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B.; Luo, Z.; Yang, W.; Hu, Z.; Guo, J.; Shi, M.; Yang, C.; Huang, F.; Li, Y.; Min, J. A layer-bylayer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule2020, 4, 407–419.

    Article  CAS  Google Scholar 

  39. Sun, C.; Qin, S.; Wang, R.; Chen, S.; Pan, F.; Qiu, B.; Shang, Z.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y. High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor. J. Am. Chem. Soc.2020, 142, 1465–1474.

    Article  CAS  PubMed  Google Scholar 

  40. Sun, C.; Pan, F.; Chen, S.; Wang, R.; Sun, R.; Shang, Z.; Qiu, B.; Min, J.; Lv, M.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y. Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells. Adv. Mater.2019, 31, 1905480.

    Article  CAS  Google Scholar 

  41. Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun.2019, 10, 2515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hong, L.; Yao, H.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R.; Liao, Q.; Gao, B.; Xian, K.; Woo, H. Y.; Ge, Z.; Hou, J. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater.2019, 31, 1903441.

    Article  CAS  Google Scholar 

  43. Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; Ma, W.; Hou, J. 17% Efficiency organic photovoltaic cell with superior processability. Natl. Sci. Rev.2020, DOI: https://doi.org/10.1093/nsr/nwz200.

    Google Scholar 

  44. Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules2012, 45, 9611–9617.

    Article  CAS  Google Scholar 

  45. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc.2017, 139, 7148–7151.

    Article  CAS  PubMed  Google Scholar 

  46. Xue, L.; Yang, Y.; Xu, J.; Zhang, C.; Bin, H.; Zhang, Z. G.; Qiu, B.; Li, X.; Sun, C.; Gao, L.; Yao, J.; Chen, X.; Yang, Y.; Xiao, M.; Li, Y. Side chain engineering on medium bandgap copolymers to suppress triplet formation for high-efficiency polymer solar cells. Adv. Mater.2017, 29, 1703344.

    Article  CAS  Google Scholar 

  47. Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao, Y. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat. Energy2018, 3, 1051–1058.

    Article  CAS  Google Scholar 

  48. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater.2015, 27, 1170–1174.

    Article  CAS  PubMed  Google Scholar 

  49. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  50. Zhang, Y.; Wan, Q.; Guo, X.; Li, W.; Guo, B.; Zhang, M.; Li, Y. Synthesis and photovoltaic properties of an n-type two-dimension-conjugated polymer based on perylene diimide and benzodithiophene with thiophene conjugated side chains. J. Mater. Chem. A2015, 3, 18442–18449.

    Article  CAS  Google Scholar 

  51. Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater.2015, 27, 4655–4660.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y.; Wang, Y.; Yang, T.; Liu, T.; Xiao, Y.; Lu, X.; Yan, H.; Yuan, Z.; Chen, Y.; Li, Y. Thioether bond modification enables boosted photovoltaic performance of nonfullerene polymer solar cells. ACS Appl. Mater. Interfaces2019, 11, 32218–32224.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y.; Shi, L.; Yang, T.; Liu, T.; Xiao, Y.; Lu, X.; Yan, H.; Yuan, Z.; Chen, Y.; Li, Y. Introducing an identical benzodithiophene donor unit for polymer donors and small-molecule acceptors to unveil the relationship between the molecular structure and photovoltaic performance of non-fullerene organic solar cells. J. Mater. Chem. A2019, 7, 26351–26357.

    Article  CAS  Google Scholar 

  54. Wu, M.; Shi, L.; Hu, Y.; Chen, L.; Hu, T.; Zhang, Y.; Yuan, Z.; Chen, Y. Additive-free non-fullerene organic solar cells with random copolymers as donors over 9% power conversion efficiency. Chin. Chem. Lett.2019, 30, 1161–1167.

    Article  CAS  Google Scholar 

  55. Qiu, B.; Chen, S.; Li, H.; Luo, Z.; Yao, J.; Sun, C.; Li, X.; Xue, L.; Zhang, Z. G.; Yang, C.; Li, Y. A simple approach to prepare chlorinated polymer donors with low-lying HOMO level for high performance polymer solar cells. Chem. Mater.2019, 31, 6558–6567.

    Article  CAS  Google Scholar 

  56. Li, W.; Li, G.; Guo, X.; Wang, Y.; Guo, H.; Xu, Q.; Zhang, M.; Li, Y. A trifluoromethyl substituted wide bandgap conjugated polymer for non-fullerene polymer solar cells with 10.4% efficiency. J. Mater. Chem. A2018, 6, 6551–6558.

    Article  CAS  Google Scholar 

  57. Tang, A.; Song, W.; Xiao, B.; Guo, J.; Min, J.; Ge, Z.; Zhang, J.; Wei, Z.; Zhou, E. Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high VOC of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chem. Mater.2019, 31, 3941–3947.

    Article  CAS  Google Scholar 

  58. Tang, A.; Zhang, Q.; Du, M.; Li, G.; Geng, Y.; Zhang, J.; Wei, Z.; Sun, X.; Zhou, E. Molecular engineering of D-π-A copolymers based on 4,8-bis(4-chlorothiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene (BDT-T-Cl) for high-performance fullerene-free organic solar cells. Macromolecules2019, 52, 6227–6233.

    Article  CAS  Google Scholar 

  59. Chao, P.; Mu, Z.; Wang, H.; Mo, D.; Chen, H.; Meng, H.; Chen, W.; He, F. Chlorination of side chains: a strategy for achieving a high open circuit voltage over 1.0 V in benzo[1,2-b:4,5-b′]dithiophene-based non-fullerene solar cells. ACS Appl. Energy Mater.2018, 1, 2365–2372.

    Article  CAS  Google Scholar 

  60. Kini, G. P.; Jeon, S. J.; Moon, D. K. Design principles and synergistic effects of chlorination on a conjugated backbone for efficient organic photovoltaics: a critical review. Adv. Mater.2020, 32, 1906175.

    Article  CAS  Google Scholar 

  61. Chao, P.; Johner, N.; Zhong, X.; Meng, H.; He, F. Chlorination strategy on polymer donors toward efficient solar conversions. J. Energy Chem.2019, 39, 208–216.

    Article  Google Scholar 

  62. Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed.2017, 56, 3045–3049.

    Article  CAS  Google Scholar 

  63. Zhang, Y.; Yao, H.; Zhang, S.; Qin, Y.; Zhang, J.; Yang, L.; Li, W.; Wei, Z.; Gao, F.; Hou, J. Fluorination vs chlorination: a case study on high performance organic photovoltaic materials. Sci. China Chem.2018, 61, 1328–1337.

    Article  CAS  Google Scholar 

  64. Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; Li, Y.; Yan, H. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem.2020, 63, 325–330.

    Article  CAS  Google Scholar 

  65. Luo, Z.; Bin, H.; Liu, T.; Zhang, Z. G.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; Wu, K.; Sun, Y.; Liu, F.; Li, Y.; Yang, C. Fine-tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54%. Adv. Mater.2018, 30, 1706124.

    Article  CAS  Google Scholar 

  66. Gao, W.; Zhang, M.; Liu, T.; Ming, R.; An, Q.; Wu, K.; Xie, D.; Luo, Z.; Zhong, C.; Liu, F.; Zhang, F.; Yan, H.; Yang, C. Asymmetrical ladder-type donor-induced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells. Adv. Mater.2018, 30, 1800052.

    Article  CAS  Google Scholar 

  67. Xie, D.; Liu, T.; Gao, W.; Zhong, C.; Huo, L.; Luo, Z.; Wu, K.; Xiong, W.; Liu, F.; Sun, Y.; Yang, C. A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency. Solar RRL2017, 1, 1700044.

    Article  CAS  Google Scholar 

  68. Guo, Q.; Ma, R.; Hu, J.; Wang, Z.; Sun, H.; Dong, X.; Luo, Z.; Liu, T.; Guo, X.; Guo, X.; Yan, H.; Liu, F.; Zhang, M. Over 15% efficiency polymer solar cells enabled by conformation tuning of newly designed asymmetric small-molecule acceptors. Adv. Funct. Mater.2020, 2000383.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51763017, 21602150, 51425304, 51863012, 21861025, and 51833004), the Shen Zhen Technology and Innovation Commission (Nos. JCYJ20170413173814007 and JCYJ20170818113905024), the Hong Kong Research Grants Council (Research Impact Fund R6021-18, Nos. 16305915, 16322416, 606012, and 16303917), Hong Kong Innovation and Technology Commission for the support through projects ITC-CNERC14SC01 and ITS/471/18, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2018R1A2A1A05077194), Wearable Platform Materials Technology Center (WMC; No. 2016R1A5A1009926) funded by the National Research Foundation of Korea (NRF) Grant by the Korean Government (MSIT), and the Research Project Funded by Ulsan City (No. 1.200042) of UNIST (Ulsan National Institute of Science & Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Liu, Changduk Yang or Yiwang Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y., Ma, R. et al. Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chin J Polym Sci 38, 797–805 (2020). https://doi.org/10.1007/s10118-020-2435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2435-5

Keywords

Navigation