Skip to main content
Log in

The proteostasis guardian HSF1 directs the transcription of its paralog and interactor HSF2 during proteasome dysfunction

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Protein homeostasis is essential for life in eukaryotes. Organisms respond to proteotoxic stress by activating heat shock transcription factors (HSFs), which play important roles in cytoprotection, longevity and development. Of six human HSFs, HSF1 acts as a proteostasis guardian regulating stress-induced transcriptional responses, whereas HSF2 has a critical role in development, in particular of brain and reproductive organs. Unlike HSF1, that is a stable protein constitutively expressed, HSF2 is a labile protein and its expression varies in different tissues; however, the mechanisms regulating HSF2 expression remain poorly understood. Herein we demonstrate that the proteasome inhibitor anticancer drug bortezomib (Velcade), at clinically relevant concentrations, triggers de novo HSF2 mRNA transcription in different types of cancers via HSF1 activation. Similar results were obtained with next-generation proteasome inhibitors ixazomib and carfilzomib, indicating that induction of HSF2 expression is a general response to proteasome dysfunction. HSF2-promoter analysis, electrophoretic mobility shift assays, and chromatin immunoprecipitation studies unexpectedly revealed that HSF1 is recruited to a heat shock element located at 1.397 bp upstream from the transcription start site in the HSF2-promoter. More importantly, we found that HSF1 is critical for HSF2 gene transcription during proteasome dysfunction, representing an interesting example of transcription factor involved in controlling the expression of members of the same family. Moreover, bortezomib-induced HSF2 was found to localize in the nucleus, interact with HSF1, and participate in bortezomib-mediated control of cancer cell migration. The results shed light on HSF2-expression regulation, revealing a novel level of HSF1/HSF2 interplay that may lead to advances in pharmacological modulation of these fundamental transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tomko RJ, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445

    CAS  PubMed  Google Scholar 

  3. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  4. Muratani M, Tansey WP (2003) How the ubiquitin–proteasome system controls transcription. Nat Rev Mol Cell Biol 4:192–201

    CAS  PubMed  Google Scholar 

  5. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    CAS  PubMed  Google Scholar 

  6. Goldberg AL (2012) Development of proteasome inhibitors as research tools and cancer drugs. J Cell Biol 199:583–588

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Manasanch EE, Orlowski RZ (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417–433

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11:239–253

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shahshahan MA, Beckley MN, Jazirehi AR (2011) Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastatic melanoma: basic and clinical aspects. Am J Cancer Res 1:913–924

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A et al (2006) Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 66:184–191

    CAS  PubMed  Google Scholar 

  11. Besse A, Besse L, Kraus M, Mendez-Lopez M, Bader J, Xin BT, de Bruin G, Maurits E, Overkleeft HS, Driessen C (2019) Proteasome inhibition in multiple myeloma: head-to-head comparison of currently available proteasome inhibitors. Cell Chem Biol 26:340–351

    CAS  PubMed  Google Scholar 

  12. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573

    CAS  Google Scholar 

  14. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    CAS  PubMed  Google Scholar 

  15. Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19:4–19

    CAS  PubMed  Google Scholar 

  16. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    CAS  PubMed  Google Scholar 

  17. Joutsen J, Sistonen L (2019) Tailoring of proteostasis networks with heat shock factors. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a034066

    Article  PubMed  Google Scholar 

  18. Sandqvist A, Björk JK, Akerfelt M, Chitikova Z, Grichine A, Vourch C, Jolly C, Salminen TA, Nymalm Y, Sistonen L (2009) Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell 20:1340–1347

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Östling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282:7077–7086

    PubMed  Google Scholar 

  20. Rossi A, Riccio A, Coccia M, Trotta E, La Frazia S, Santoro MG (2014) The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: role of heat shock factor 1 (HSF1)–heat shock factor 2 (HSF2) heterocomplexes. J Biol Chem 289:12705–12715

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Elsing AN, Aspelin C, Björk JK, Bergman HA, Himanen SV, Kallio MJ, Roos-Mattjus P, Sistonen L (2014) Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. J Cell Biol 206:735–749

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jaeger AM, Makley LN, Gestwicki JE, Thiele DJ (2014) Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity. J Biol Chem 289:30459–30469

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rossi A, Trotta E, Brandi R, Arisi I, Coccia M, Santoro MG (2010) AIRAP, a new human heat shock gene regulated by heat shock factor 1. J Biol Chem 285:13607–13615

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Coccia M, Rossi A, Riccio A, Trotta E, Santoro MG (2017) Human NF-κB repressing factor acts as a stress-regulated switch for ribosomal RNA processing and nucleolar homeostasis surveillance. Proc Natl Acad Sci USA 114:1045–1050

    CAS  PubMed  Google Scholar 

  26. Kroeger PE, Morimoto RI (1994) Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol Cell Biol 14:7592–7603

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vihervaara A, Sergelius C, Vasara J, Blom MAH, Elsing AN, Roos-Mattjus P, Sistonen L (2013) Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci USA 110:3388–3397

    Google Scholar 

  28. Jaeger AM, Pemble CW IV, Sistonen L, Thiele DJ (2016) Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors. Nat Struct Mol Biol 23:147–154

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahlskog JK, Björk JK, Elsing AN, Aspelin C, Kallio M, Roos-Mattjus P, Sistonen L (2010) Anaphase-promoting complex/cyclosome participates in the acute response to protein-damaging stress. Mol Cell Biol 30:5608–5620

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mathew A, Mathur SK, Morimoto RI (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin–proteasome pathway. Mol Cell Biol 18:5091–5098

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rallu M, Mt Loones, Lallemand Y, Morimoto R, Morange M, Mezger V (1997) Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Natl Acad Sci USA 94:2392–2397

    CAS  PubMed  Google Scholar 

  32. Pirkkala L, Alastalo TP, Nykanen P, Seppa L, Sistonen L (1999) Differentiation lineage-specific expression of human heat shock transcription factor 2. FASEB J 13:1089–1098

    CAS  PubMed  Google Scholar 

  33. Abane R, Mezger V (2010) Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172

    CAS  PubMed  Google Scholar 

  34. El Fatimy R, Miozzo F, Le Mouel A, Abane R, Schwendimann L, Saberan-Djoneidi D, de Thonel A, Massaoudi I, Paslaru L, Hashimoto-Torii K et al (2014) Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 6:1043–1061

    PubMed  PubMed Central  Google Scholar 

  35. Kallio M, Chang Y, Manuel M, Alastalo TP, Rallu M, Gitton Y, Pirkkala L, Loones MT, Paslaru L, Larney S et al (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591–2601

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mou L, Wang Y, Li H, Huang Y, Jiang T, Huang W, Li Z, Chen J, Xie J, Liu Y et al (2013) A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet 132:159–165

    CAS  PubMed  Google Scholar 

  37. Akerfelt M, Henriksson E, Laiho A, Vihervaara A, Rautoma K, Kotaja N, Sistonen L (2008) Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc Natl Acad Sci USA 105:11224–11229

    CAS  PubMed  Google Scholar 

  38. Wilkerson DC, Murphy LA, Sarge KD (2008) Interaction of HSF1 and HSF2 with the Hspa1b promoter in mouse epididymal spermatozoa. Biol Reprod 79:283–288

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sistonen L, Sarge KD, Phillips B, Abravaya K, Morimoto RI (1992) Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12:4104–4111

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Eriksson M, Jokinen E, Sistonen L, Leppa S (2000) Heat shock factor 2 is activated during mouse heart development. Int J Dev Biol 44:471–477

    CAS  PubMed  Google Scholar 

  41. Kawazoe Y, Nakai A, Tanabe M, Nagata K (1998) Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur J Biochem 255:356–362

    CAS  PubMed  Google Scholar 

  42. Murphy SP, Gorzowski JJ, Sarge KD, Phillips B (1994) Characterization of constitutive HSF2 DNA-binding activity in mouse embryonal carcinoma cells. Mol Cell Biol 14:5309–5317

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dai C, Sampson SB (2016) HSF1: guardian of proteostasis in cancer. Trends Cell Biol 26:17–28

    CAS  PubMed  Google Scholar 

  44. Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Home T, Jensen RA, Rao R (2015) Heat shock factor 1 in protein homeostasis and oncogenic signal integration. Cancer Res 75:907–912

    CAS  PubMed  Google Scholar 

  46. Scomazzon SP, Riccio A, Santopolo S, Lanzilli G, Coccia M, Rossi A, Santoro MG (2019) The zinc-finger AN1-type domain 2a gene acts as a regulator of cell survival in human melanoma: role of E3-ligase cIAP2. Mol Cancer Res. https://doi.org/10.1158/1541-7786.MCR-19-0243

    Article  Google Scholar 

  47. Piva R, Gianferretti P, Ciucci A, Taulli R, Belardo G, Santoro MG (2005) 15-Deoxy-Δ12,14-prostaglandin J2 induces apoptosis in human malignant B cells: an effect associated with inhibition of NF-κB activity and down-regulation of antiapoptotic proteins. Blood 105:1750–1758

    CAS  PubMed  Google Scholar 

  48. Wang X, Grammatikakis N, Siganou A, Calderwood SK (2003) Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3ε binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 23:6013–6026

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossi A, Ciafrè S, Balsamo M, Pierimarchi P, Santoro MG (2006) Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer. Cancer Res 66:7678–7685

    CAS  PubMed  Google Scholar 

  50. Rossi A, Coccia M, Trotta E, Angelini M, Santoro MG (2012) Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. PLoS ONE 7:e31304

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rossi A, Elia G, Santoro MG (1997) Inhibition of nuclear factor κB by prostaglandin A1: an effect associated with heat shock transcription factor activation. Proc Natl Acad Sci USA 94:746–750

    CAS  PubMed  Google Scholar 

  52. Mosser DD, Theodorakis NG, Morimoto RI (1988) Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 8:4736–4744

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, Santoro MG (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403:103–108

    CAS  PubMed  Google Scholar 

  54. Rossi A, Elia G, Santoro MG (1998) Activation of the heat shock factor 1 by serine protease inhibitors. An effect associated with nuclear factor-κB inhibition. J Biol Chem 273:16446–16452

    CAS  PubMed  Google Scholar 

  55. Roberts TC, Hart JR, Kaikkonen MU, Weinberg MS, Vogt PK, Morris KV (2015) Quantification of nascent transcription by bromouridine immunocapture nuclear run-on RT-qPCR. Nat Protoc 10:1198–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, Van Der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G et al (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46:D260–D266

    CAS  PubMed  Google Scholar 

  57. Carey MF, Peterson CL, Smale ST (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot5279

    Article  PubMed  Google Scholar 

  58. Piacentini S, La Frazia S, Riccio A, Pedersen JZ, Topai A, Nicolotti O, Rossignol JF, Santoro MG (2018) Nitazoxanide inhibits paramyxovirus replication by targeting the fusion protein folding: role of glycoprotein-specific thiol oxidoreductase ERp57. Sci Rep 8:10425

    PubMed  PubMed Central  Google Scholar 

  59. Shah SP, Lonial S, Boise LH (2015) When cancer fights back: multiple myeloma, proteasome inhibition, and the heat-shock response. Mol Cancer Res 13:1163–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Björk JK, Åkerfelt M, Joutsen J, Puustinen MC, Cheng F, Sistonen L, Nees M (2015) Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene 35:1770–1784

    PubMed  PubMed Central  Google Scholar 

  61. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121:2750–2767

    CAS  PubMed  Google Scholar 

  62. Liston DR, Davis M (2017) Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies. Clin Cancer Res 23:3489–3498

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pirkkala L, Alastalo TP, Zuo X, Benjamin IJ, Sistonen L (2000) Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20:2670–2675

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dantuma NP, Groothuis TAM, Salomons FA, Neefjes J (2006) A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J Cell Biol 173:19–26

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kikuchi J, Wada T, Shimizu R, Izumi T, Akutsu M, Mitsunaga K, Noborio-Hatano K, Nobuyoshi M, Ozawa K, Kano Y et al (2010) Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma. Blood 116:406–417

    CAS  PubMed  Google Scholar 

  66. Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl FU (2014) Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156:975–985

    CAS  PubMed  Google Scholar 

  67. Thaler S, Thiede G, Hengstler JG, Schad A, Schmidt M, Sleeman JP (2015) The proteasome inhibitor bortezomib (Velcade) as potential inhibitor of estrogen receptor-positive breast cancer. Int J Cancer 137:686–697

    CAS  PubMed  Google Scholar 

  68. Jones MD, Liu JC, Barthel TK, Hussain S, Lovria E, Cheng D, Schoonmaker JA, Mulay S, Ayers DC, Bouxsein ML et al (2010) A proteasome inhibitor, bortezomib, inhibits breast cancer growth and reduces osteolysis by downregulating metastatic genes. Clin Cancer Res 16:4978–4989

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin–proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78:773–785

    CAS  PubMed  Google Scholar 

  70. Ri M (2016) Mechanism of action of bortezomib in multiple myeloma therapy. Int J Myeloma 6:1–6

    Google Scholar 

  71. Qiang YW, Hu B, Chen Y, Zhong Y, Shi B, Barlogie B, Shaughnessy JD (2009) Bortezomib induces osteoblast differentiation via Wnt-independent activation of β-catenin/TCF signaling. Blood 113:4319–4330

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fok JHL, Hedayat S, Zhang L, Aronson LI, Mirabella F, Pawlyn C, Bright MD, Wardell CP, Keats JJ, De Billy E et al (2018) HSF1 is essential for myeloma cell survival and a promising therapeutic target. Clin Cancer Res 24:2395–2407

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li J, Labbadia J, Morimoto RI (2017) Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol 27:895–905

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Min JN, Huang L, Zimonjic DB, Moskophidis D, Mivechi NF (2007) Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26:5086–5097

    CAS  PubMed  Google Scholar 

  75. Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48

    CAS  PubMed  Google Scholar 

  76. Chou SD, Murshid A, Eguchi T, Gong J, Calderwood SK (2015) HSF1 regulation of β-catenin in mammary cancer cells through control of HUR/ELAVL1 expression. Oncogene 34:2178–2188

    CAS  PubMed  Google Scholar 

  77. Su KH, Cao J, Tang Z, Dai S, He Y, Sampson SB, Benjamin IJ, Dai C (2016) HSF1 critically attunes proteotoxic-stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol 18:527–539

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, Hankinson SE, Schnitt SJ, Whitesell L, Tamimi RM, Lindquist S et al (2011) High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci USA 108:18378–18383

    CAS  PubMed  Google Scholar 

  79. Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, Darvishian F, Salvaggio C, Zhong J, Bhatt K et al (2015) FBXW7 modulates cellular stress response and metastatic potential via HSF1 post-translational modification. Nat Cell Biol 17:322–332

    PubMed  PubMed Central  Google Scholar 

  80. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA et al (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26:362–367

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank G. Zupi (Regina Elena Cancer Institute, Rome, Italy) for providing the M10 melanoma cell line, R. Piva (University of Turin, Italy) for KMM-1 multiple myeloma cells and S. Calderwood (Harvard Medical School, Boston, MA) for the Flag-HSF1-pcDNA3 expression vector. We also thank E. Romano (Center for Advanced Microscopy, University of Rome Tor Vergata) for assistance with confocal microscopy.

Funding

This work was supported by grants from the Italian Ministry of University and Scientific Research (PRIN project N 2010PHT9NF-006).

Author information

Authors and Affiliations

Authors

Contributions

S.S. performed the study on HSF2 transcription and ChIP analysis; S.S. and A. Rossi performed DNA-binding activity assays; S.S. and A. Riccio performed silencing experiments and analysis of cell survival; A. Riccio and A. Rossi generated stable HSF1-silenced cell lines; S.S. performed the study on cancer cell migration; M.G.S. designed the study; M.G.S. and S.S. wrote the manuscript. All authors contributed to the interpretation of the data and approve the content of the manuscript.

Corresponding author

Correspondence to M. Gabriella Santoro.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santopolo, S., Riccio, A., Rossi, A. et al. The proteostasis guardian HSF1 directs the transcription of its paralog and interactor HSF2 during proteasome dysfunction. Cell. Mol. Life Sci. 78, 1113–1129 (2021). https://doi.org/10.1007/s00018-020-03568-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03568-x

Keywords

Navigation