Skip to main content
Log in

Performance analysis of electrostatic plasma-based dopingless nanotube TFET

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the nanotube electrostatic plasma-based tunnel field-effect transistor (EP-NTTFET) has been proposed. The use of external bias on the side contacts of the source/drain region helps in the induction of charge carriers even with the use of the polysilicon electrode. The analog parameters are studied such as OFF-current, ON-current, ION/IOFF, sub-threshold slope, threshold voltage, transconductance, TGF, cut-off frequency and DIBL with channel length (LC), Nanotube radius (TSi) and Source voltage (VS) variation. The channel length (LC) varies from 10 to 50 nm, OFF-current varies from 3.79 × 10–13 A/um to 6.79 × 10–19 A/um, sub-threshold slope improves from 36.88 mV/decade to 9.6 mV/decade and ION/IOFF current ration improves from the order of 107 to 1013. The nanotube radius (TSi) varies from 3.5 nm to 12 nm, so ON-current varies from 2.6 × 10–5 A/um to 4.78 × 10–5 A/um, OFF-current increases and sub-threshold slope increases from 18.28 mV/decade to 26.9 mV/decade. The source voltage (VS) varies from  – 0.2 V to  – 1.2 V, so ON-current varies from 7.88 × 10–6 A/um to 3 × 10–5 A/um, OFF-current increases from 6.5 × 10–19 A/um to 2.25 × 10–15 A/um, sub-threshold slope improves from 24.84 mV/decade to 20.83 mV/decade and threshold voltage decreases from 0.36 V to 0.25 V. To reduce the thermal budget with simple fabrication steps and lower random dopant fluctuations (RDFs) electrostatics plasma-based nanotube TFET is used. The proposed device EP-NTTFET provides higher ON current, higher ION/IOFF current ratio, better sub-threshold slope, and lower threshold voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source to drain contact. c 2-D structure of EP-NTTFET across the cutling AA’. d Colour indication of different materials used in Fig. 1

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.R. Schaller, Moore’s law: Past, present and future. IEEE Spectr 34(6), 52–59 (1997). https://doi.org/10.1109/6.591665

    Article  Google Scholar 

  2. R.H. Yan, A. Ourmazd, K.F. Lee, Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans Electron Devices 39(7), 1704–1710 (1992). https://doi.org/10.1109/16.141237

    Article  ADS  Google Scholar 

  3. Y. Choi, B.G. Park, J.D. Lee, T.-J.K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28(8), 743–745 (2007). https://doi.org/10.1109/LED.2007.901273

    Article  ADS  Google Scholar 

  4. Krishnamohan T, Kim D, Raghunathan S, Saraswat K (2008) “Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and 60 mV/dec subthreshold slope,” in Proc. IEEE Int Electron Devices Meet 10.1109/IEDM.2008.4796839

  5. M.K. Mamidala, R. Vishnoi, P. Pandey, Tunnel field-effect transistors (TFET): Modelling and Simulation (Wiley, West Sussex, 2016)

    Book  Google Scholar 

  6. Sahoo S, Dash S, Mishra GP (2019) “Work-function modulated hetero gate charge plasma TFET to enhance the device performance,” 2019 Devices for Integrated Circuit (DevIC), Kalyani, India. 461–464. 10.1109/DEVIC.2019.8783943

  7. N. Kumar, A. Raman, Design and Investigation of Charge-Plasma-Based Work Function Engineered Dual-Metal-Heterogeneous Gate Si-Si0.55Ge0.45 GAA-Cylindrical NWTFET for Ambipolar Analysis. IEEE Trans. Electron Devices 66(3), 1468–1474 (2019). https://doi.org/10.1109/TED.2019.2893224

    Article  ADS  Google Scholar 

  8. H. Agarwal et al., Proposal for Capacitance Matching in Negative Capacitance Field-Effect Transistors. IEEE Electron Device Lett. 40(3), 463–466 (2019). https://doi.org/10.1109/LED.2019.2891540

    Article  ADS  Google Scholar 

  9. A.K. Gupta, A. Raman, N. Kumar, Design and Investigation of a Novel Charge Plasma-Based Core-Shell Ring-TFET: Analog and Linearity Analysis. IEEE Trans. Electron Devices 66(8), 3506–3512 (2019). https://doi.org/10.1109/TED.2019.2924809

    Article  ADS  Google Scholar 

  10. S. Sahay, M.J. Kumar, ‘A novel gate-stack-engineered nanowire FET for scaling to the sub-10-nm regime’. IEEE Trans. Electron Devices 63(12), 5055–5059 (2016). https://doi.org/10.1109/TED.2016.2617383

    Article  ADS  Google Scholar 

  11. J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.M. Kelleher, B. McCarthy, R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010). https://doi.org/10.1038/nnan0.2010.15

    Article  ADS  Google Scholar 

  12. N. Kumar, U. Mushtaq, S.I. Amin, S. Anand, Design and performance analysis of dual-gate all around core-shell nanotube TFET. Superlattices Microstructures 125, 356–364 (2019). https://doi.org/10.1016/j.spmi.2018.09.012

    Article  ADS  Google Scholar 

  13. S. Sahay, M.J. Kumar, Comprehensive Analysis of Gate-Induced Drain Leakage in Emerging FET Architectures: Nanotube FETs Versus Nanowire FETs. IEEE Access 5, 18918–18926 (2017). https://doi.org/10.1109/ACCESS.2017.2751518

    Article  Google Scholar 

  14. G. Musalgaonkar, S. Sahay, R.S. Saxena, M.J. Kumar, A Line Tunneling Field-Effect Transistor Based on Misaligned Core-Shell Gate Architecture in Emerging Nanotube FETs. IEEE Trans. Electron Devices 66(6), 2809–2816 (2019). https://doi.org/10.1109/TED.2019.2910156

    Article  ADS  Google Scholar 

  15. R.K. Sharma, M. Gupta, R.S. Gupta, TCAD assessment of device design technologies for enhanced performance of nanoscale DG MOSFET. IEEE Trans. Electron Devices 58(9), 2936–2943 (2011). https://doi.org/10.1109/TED.2011.2160065

    Article  ADS  Google Scholar 

  16. Y. Tsividis, and C. Mc Andrew, "Operation and Modeling of the MOS Transistor," Oxford Univ. Press, 2011.

  17. S. Gundapaneni, S. Ganguly, A. Kottantharayil, Enhanced electrostatic integrity of short channel junctionless transistor with high-k spacers. IEEE Electron Device Lett. 32(10), 1325–1327 (2011). https://doi.org/10.1109/LED.2011.2162309

    Article  ADS  Google Scholar 

  18. S. Sahay, M.J. Kumar, Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electron Devices 62(11), 3882–3886 (2015). https://doi.org/10.1109/TED.2015.2478955

    Article  ADS  Google Scholar 

  19. M. H. Na, E. J. Nowak, W. Haensch, and J. Cai, “The effective drive current in CMOS inverters,” in IEDM Tech. Dig., 2002, pp. 121–124. 10.1109/IEDM.2002.1175793.

  20. R. Rios et al., Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm. IEEE Electron Device Lett. 32(9), 1170–1172 (2011). https://doi.org/10.1109/LED.2011.2158978

    Article  ADS  Google Scholar 

  21. H. Lu, A. Seabaugh, Tunnel field-effect transistors: State-of-theart. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014). https://doi.org/10.1109/jeds.2014.2326622

    Article  Google Scholar 

  22. S.H. Kim, S. Agarwal, Z.A. Jacobson, P. Matheu, C. Hu, T.-J.K. Liu, Tunnel field effect transistor with raised germanium source. IEEE Electron Device Lett. 31(10), 1107–1109 (2010). https://doi.org/10.1109/led.2010.2061214

    Article  ADS  Google Scholar 

  23. A. K. Gupta, A. Raman and N. Kumar, “Cylindrical Nanowire-TFET with Core-Shell Channel Architecture: Design and Investigation”. Silicon, pp.1–8., 2019. doi:10.1007/s12633–019–00331–1

  24. N. Kumar and A. Raman “Design and Analog Performance Analysis of Charge-Plasma Based Cylindrical GAA Silicon Nanowire Tunnel Field Effect Transistor”. Silicon, pp.1–8, 2019. doi: 10.1007/s12633–019–00355–7

  25. N. Kumar and A. Raman “Low voltage charge-plasma based dopingless Tunnel Field Effect Transistor: analysis and optimization”. Microsystem technologies, pp.1–8, 2019. doi: 10.1007/s00542–019–04666-y

  26. S. Shreya, A.H. Khan, N. Kumar, S.I. Amin, S. Anand, Core-Shell Junctionless Nanotube Tunnel Field Effect Transistor: Design and Sensitivity Analysis for Biosensing Application. IEEE Sens. J. 20(2), 672–679 (2019). https://doi.org/10.1109/JSEN.2019.2944885

    Article  ADS  Google Scholar 

  27. S.-G. Hur et al., “A practical Si nanowire technology with nanowire-oninsulator structure for beyond 10nm logic technologies,” in IEDM Tech. Dig., 2013, pp. 26.5.1–26.5.4. doi: 10.1109/iedm.2013.6724698.

  28. ATLAS User’s Manual, Version 5 (SILVACO, Santa Clara, CA, USA, 2011)

    Google Scholar 

  29. J. Patel, D. Sharma, S. Yadav, A. Lemtur, P. Suman, Performance improvement of nano wire TFET by hetero-dielectric and hetero-material: At device and circuit level. Microelectron. J. 85, 72–82 (2019). https://doi.org/10.1016/j.mejo.2019.02.004

    Article  Google Scholar 

  30. G. Dewey et al., “Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing,” in IEDM Tech. Dig., 2011, pp. 33.6.1–33.6.4. doi: 10.1109/IEDM.2011.6131666.

  31. K. Tomioka, M. Yoshimura, T. Fukui, Sub 60 mV/decade switch using an InAs nanowire–Si heterojunction and turn-on voltage shift with a pulsed doping technique. Nano Lett. 13(12), 5822–5826 (2013). https://doi.org/10.1021/nl402447h

    Article  ADS  Google Scholar 

  32. R. Gandhi, Z. Chen, N. Singh, K. Banerjee, S. Lee, Vertical Si-nanowire n-type tunneling FETs with low subthreshold swing (≤ 50 mV/decade) at room temperature. IEEE Electron Device Lett. 32(4), 437–439 (2011). https://doi.org/10.1109/led.2011.2106757

    Article  ADS  Google Scholar 

  33. A. N. Hanna and M. M. Hussain, “Si/Ge hetero-structure nanotube tunnel field effect transistor,” J. Appl. Phys., vol. 117, no. 1, 2015, Art. no. 014310. doi: 10.1063/1.4905423.

  34. G. Musalgaonkar, S. Sahay, R. S. Saxena and M. J. Kumar, "Nanotube Tunneling FET With a Core Source for Ultrasteep Subthreshold Swing: A Simulation Study," in IEEE Transactions on Electron Devices, vol. 66, no. 10, pp. 4425–4432, Oct. 201910.1109/TED.2019.2933756

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Raman, A. Performance analysis of electrostatic plasma-based dopingless nanotube TFET. Appl. Phys. A 126, 573 (2020). https://doi.org/10.1007/s00339-020-03736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03736-7

Keywords

Navigation