Skip to main content
Log in

Enhanced In-Silico Polyethylene Wear Simulation of Total Knee Replacements During Daily Activities

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A computational wear simulator is an efficient tool for evaluating the wear of artificial knee joints. The classical Archard’s wear law-based simulator has questionable accuracy and is focused on walking. In this study, an in silico polyethylene wear simulation of total knee replacements was developed considering the various highly demanding daily activities. A good predicted accuracy (error = 8.1%) was found through comparison of the experimental results. A relatively larger averaged wear loss was found under the loading condition (1.53 mg/mc) of daily activities compared with the walking condition (1.32 mg/mc). The squatting movement (2.57 mg/mc) produces the highest overall wear rate. In addition, a relatively larger amount of wear was found on the medial side knee prosthesis than that on the lateral side. The enhanced in silico polyethylene wear simulator provides an accurate and comprehensive tool for wear prediction in preclinical wear testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abdelgaied, A., J. Fisher, and L. M. Jennings. A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements. J. Mech. Behav. Biomed. Mater. 78:282–291, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abdelgaied, A., F. Liu, C. Brockett, L. Jennings, J. Fisher, and Z. Jin. Computational wear prediction of artificial knee joints based on a new wear law and formulation. J. Biomech. 44:1108–1116, 2011.

    PubMed  Google Scholar 

  3. Archard, J. F., and W. Hirst. The wear of metals under unlubricated conditions. Proc. R. Soc. 236:397–410, 1956.

    Google Scholar 

  4. Battaglia, S., C. Belvedere, S. A. Jaber, S. Affatato, V. D’Angeli, and A. Leardini. A new protocol from real joint motion data for wear simulation in total knee arthroplasty: stair climbing. Med. Eng. Phys. 36:1605–1610, 2014.

    PubMed  Google Scholar 

  5. Bergmann, G., A. Bender, F. Graichen, J. Dymke, A. Rohlmann, A. Trepczynski, M. O. Heller, and I. Kutzner. Standardized loads acting in knee implants. PLoS ONE 9:e86035, 2014.

    PubMed  PubMed Central  Google Scholar 

  6. Brockett, C. L., A. Abdelgaied, T. Haythornthwaite, C. Hardaker, J. Fisher, and L. M. Jennings. The influence of simulator input conditions on the wear of total knee replacements: an experimental and computational study. Proc. Inst. Mech. Eng. H 230:429–439, 2016.

    PubMed  PubMed Central  Google Scholar 

  7. Dassault Systèmes. Abaqus 2018 Documentation. 2018.

  8. DesJardins, J. D., S. A. Banks, L. C. Benson, T. Pace, and M. LaBerge. A direct comparison of patient and force-controlled simulator total knee replacement kinematics. J. Biomech. 40:3458–3466, 2007.

    PubMed  Google Scholar 

  9. Fregly, B. J., T. F. Besier, D. G. Lloyd, S. L. Delp, S. A. Banks, M. G. Pandy, and D. D. D’Lima. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30:503–513, 2012.

    PubMed  Google Scholar 

  10. Galvin, A. L., L. Kang, I. Udofia, L. M. Jennings, H. M. J. McEwen, Z. Jin, and J. Fisher. Effect of conformity and contact stress on wear in fixed-bearing total knee prostheses. J. Biomech. 42:1898–1902, 2009.

    PubMed  Google Scholar 

  11. Goreham-Voss, C. M., P. J. Hyde, R. M. Hall, J. Fisher, and T. D. Brown. Cross-shear implementation in sliding-distance-coupled finite element analysis of wear in metal-on-polyethylene total joint arthroplasty: intervertebral total disc replacement as an illustrative application. J. Biomech. 43:1674–1681, 2010.

    PubMed  PubMed Central  Google Scholar 

  12. Innocenti, B., L. Labey, A. Kamali, W. Pascale, and S. Pianigiani. Development and validation of a wear model to predict polyethylene wear in a total knee arthroplasty: a finite element analysis. Lubricants 2:193–205, 2014.

    Google Scholar 

  13. Kang, L., A. L. Galvin, T. D. Brown, Z. Jin, and J. Fisher. Quantification of the effect of cross-shear on the wear of conventional and highly cross-linked UHMWPE. J. Biomech. 41:340–346, 2008.

    PubMed  Google Scholar 

  14. Kang, L., A. L. Galvin, J. Fisher, and Z. Jin. Enhanced computational prediction of polyethylene wear in hip joints by incorporating cross-shear and contact pressure in additional to load and sliding distance: effect of head diameter. J. Biomech. 42:912–918, 2009.

    PubMed  Google Scholar 

  15. Kang, K.-T., Y.-G. Koh, M. Jung, J.-H. Nam, J. Son, Y. H. Lee, S.-J. Kim, and S.-H. Kim. The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions. Bone Jt. Res. 6:31–42, 2017.

    Google Scholar 

  16. Kang, K. T., J. Son, H. J. Kim, C. Baek, O. R. Kwon, and Y. G. Koh. Wear predictions for UHMWPE material with various surface properties used on the femoral component in total knee arthroplasty: a computational simulation study. J. Mater. Sci. Mater. Med. 28:10, 2017.

    CAS  Google Scholar 

  17. Knight, L. A., S. Pal, J. C. Coleman, F. Bronson, H. Haider, D. L. Levine, M. Taylor, and P. J. Rullkoetter. Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading. J. Biomech. 40:1550–1558, 2007.

    PubMed  Google Scholar 

  18. Kretzer, J. P., J. Reinders, R. Sonntag, S. Hagmann, M. Streit, S. Jeager, and B. Moradi. Wear in total knee arthroplasty: just a question of polyethylene? Metal ion release in total knee arthroplasty. Int. Orthop. 38:335–340, 2014.

    PubMed  Google Scholar 

  19. Laurent, M. P., T. S. Johnson, J. Q. Yao, C. R. Blanchard, and R. D. Crowninshield. In vitro lateral versus medial wear of a knee prosthesis. Wear 255:1101–1106, 2003.

    CAS  Google Scholar 

  20. Lee, R. K., L. A. Korduba, and A. Wang. An improved theoretical model of orientation softening and cross-shear wear of ultra high molecular weight polyethylene. Wear 271:2230–2233, 2011.

    CAS  Google Scholar 

  21. Lin, Y. T., J. S. S. Wu, and J. H. Chen. The study of wear behaviors on abducted hip joint prostheses by an alternate finite element approach. Comput. Methods Programs Biomed. 131:143–155, 2016.

    PubMed  Google Scholar 

  22. Liu, F., A. Galvin, Z. Jin, and J. Fisher. A new formulation for the prediction of polyethylene wear in artificial hip joints. Proc. Inst. Mech. Eng. H 225:16–24, 2011.

    CAS  PubMed  Google Scholar 

  23. Mell, S. P., S. Fullam, M. A. Wimmer, and H. J. Lundberg. Finite element evaluation of the newest ISO testing standard for polyethylene total knee replacement liners. Proc. Inst. Mech. Eng. H 232:545–552, 2018.

    PubMed  PubMed Central  Google Scholar 

  24. Miura, H., H. Higaki, Y. Nakanishi, T. Mawatari, T. Moro-Oka, T. Murakami, and Y. Iwamoto. Prediction of total knee arthroplasty polyethylene wear using the wear index. J. Arthroplasty 17:760–766, 2002.

    PubMed  Google Scholar 

  25. Morlock, M., E. Schneider, A. Bluhm, M. Vollmer, G. Bergmann, V. Müller, and M. Honl. Duration and frequency of every day activities in total hip patients. J. Biomech. 34:873–881, 2001.

    CAS  PubMed  Google Scholar 

  26. National joint registry 15th annual report 2018. 2018.https://doi.org/10.1038/nmat2505

  27. Naudie, D. D. R., D. J. Ammeen, G. A. Engh, and C. H. Rorabeck. Wear and osteolysis around total knee arthroplasty. J. Am. Acad. Orthop. Surg. 15:53–64, 2007.

    PubMed  Google Scholar 

  28. O’Brien, S. T., Y. Luo, and J. M. Brandt. In-vitro and in silico investigations on the influence of contact pressure on cross-linked polyethylene wear in total knee replacements. Wear 332–333:687–693, 2015.

    Google Scholar 

  29. O’Brien, S., Y. Luo, C. Wu, M. Petrak, E. Bohm, and J. M. Brandt. Computational development of a polyethylene wear model for the articular and backside surfaces in modular total knee replacements. Tribol. Int. 59:284–291, 2013.

    Google Scholar 

  30. Ranawat, A. S., S. S. Mohanty, S. E. Goldsmith, V. J. Rasquinha, J. A. Rodriguez, and C. S. Ranawat. Experience with an all-polyethylene total knee arthroplasty in younger, active patients with follow-up from 2 to 11 years. J. Arthroplasty 20:7–11, 2005.

    PubMed  Google Scholar 

  31. Reinders, J., R. Sonntag, L. Vot, C. Gibney, M. Nowack, and J. P. Kretzer. Wear testing of moderate activities of daily living using in vivo measured knee joint loading. PLoS ONE 10:9–11, 2015.

    Google Scholar 

  32. Schwenke, T., and M. A. Wimmer. Cross-shear in metal-on-polyethylene articulation of orthopaedic implants and its relationship to wear. Wear 301:168–174, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwiesau, J., C. Schilling, C. Kaddick, S. Utzschneider, V. Jansson, B. Fritz, W. Blömer, and T. M. Grupp. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities. Med. Eng. Phys. 35:591–600, 2013.

    PubMed  Google Scholar 

  34. Shu, L., S. Li, and N. Sugita. Systematic review of computational modelling for biomechanics analysis of total knee replacement. Biosurf. Biotribol. 6:3–11, 2020.

    Google Scholar 

  35. Shu, L., K. Yamamoto, S. Kai, J. Inagaki, and N. Sugita. Symmetrical cruciate-retaining versus medial pivot prostheses: the effect of intercondylar sagittal conformity on knee kinematics and contact mechanics. Comput. Biol. Med. 108:101–110, 2019.

    PubMed  Google Scholar 

  36. Shu, L., K. Yamamoto, J. Yao, P. Saraswat, Y. Liu, M. Mitsuishi, and N. Sugita. A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement. J. Biomech. 77:146–154, 2018.

    PubMed  Google Scholar 

  37. Twiggs, J. G., E. A. Wakelin, J. P. Roe, D. M. Dickison, B. A. Fritsch, B. P. Miles, and A. J. Ruys. Patient-specific simulated dynamics after total knee arthroplasty correlate with patient-reported outcomes. J. Arthroplasty 33:2843–2850, 2018.

    PubMed  Google Scholar 

  38. Wang, A. A unified theory of wear for ultra-high molecular weight polyethylene in multi-directional sliding. Wear 248:38–47, 2001.

    CAS  Google Scholar 

  39. Wang, X. H., H. Li, X. Dong, F. Zhao, and C. K. Cheng. Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses. Clin. Biomech. 63:34–40, 2019.

    Google Scholar 

  40. Willing, R., and I. Y. Kim. Three dimensional shape optimization of total knee replacements for reduced wear. Struct. Multidiscip. Optim. 38:405–414, 2009.

    Google Scholar 

  41. Wu, J. S. S., J. P. Hung, C. S. Shu, and J. H. Chen. The computer simulation of wear behavior appearing in total hip prosthesis. Comput. Methods Programs Biomed. 70:81–91, 2003.

    PubMed  Google Scholar 

  42. Zhang, J., Z. Chen, Y. Gao, X. Zhang, L. Guo, and Z. Jin. Computational wear prediction for impact of kinematics boundary conditions on wear of total knee replacement using two cross-shear models. J. Tribol. 2019. https://doi.org/10.1115/1.4044377.

    Article  PubMed  Google Scholar 

  43. Zhang, J., Z. Chen, L. Wang, D. Li, and Z. Jin. Load application for the contact mechanics analysis and wear prediction of total knee replacement. Proc. Inst. Mech. Eng. H 231:444–454, 2017.

    PubMed  Google Scholar 

  44. Zhang, Y., D. J. Hunter, M. C. Nevitt, L. Xu, J. Niu, L. Y. Lui, W. Yu, P. Aliabadi, and D. T. Felson. Association of squatting with increased prevalence of radiographic tibiofemoral knee osteoarthritis: the Beijing osteoarthritis study. Arthritis Rheum. 50:1187–1192, 2004.

    PubMed  Google Scholar 

  45. Zhao, D., H. Sakoda, W. G. Sawyer, S. A. Banks, and B. J. Fregly. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor. J Biomech Eng 130:11004, 2008.

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Zhongmin Jin from Southwest Jiaotong University for advice and discussion on the wear modeling. The authors also thank Mr. Junichi Inagaki and Dr. Shin Kai from Robert Reid Inc., Japan, for providing the prosthesis model and advice in wear testing.

Conflict of interest

None declared.

Funding

This research is supported by JSPS KAKENHI Grant No. 20K20162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Shu.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, L., Hashimoto, S. & Sugita, N. Enhanced In-Silico Polyethylene Wear Simulation of Total Knee Replacements During Daily Activities. Ann Biomed Eng 49, 322–333 (2021). https://doi.org/10.1007/s10439-020-02555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02555-4

Keywords

Navigation