skip to main content
research-article

3D Facial Similarity Measurement and Its Application in Facial Organization

Authors Info & Claims
Published:05 July 2020Publication History
Skip Abstract Section

Abstract

We propose a novel framework for 3D facial similarity measurement and its application in facial organization. The construction of the framework is based on Kendall shape space theory. Kendall shape space is a quotient space that is constructed by shape features. In Kendall shape space, the shape features can be measured and is robust to similarity transformations. In our framework, a 3D face is represented by the facial feature landmarks model (FFLM), which can be regarded as the facial shape features. We utilize the geodesic in Kendall shape space to represent the FFLM similarity measurement, which can be regarded as the 3D facial similarity measurement. The FFLM similarity measurement is robust to facial expressions, head poses, and partial facial data. In our experiments, we compute the distance between different FFLMs in two public facial databases: FRGC2.0 and BosphorusDB. On average, we achieve a rank-one facial recognition rate of 98%. Based on the similarity results, we propose a method to construct the facial organization. The facial organization is a hierarchical structure that is achieved from the facial clustering by FFLM similarity measurement. Based on the facial organization, the performance of face searching in a large facial database can be improved obviously (about 400% improvement in experiments).

References

  1. R. Ahdid, S. Safi, M. Fakir, and B. Manaut.2017. Geodesic distance on Riemannian manifold using Jacobi iterations in 3D face recognition system. Int. J. Inf. Commun. Technol. 6, 1 (2017), 10--19.Google ScholarGoogle Scholar
  2. R. Ahdid, S. Safi, and B. Manaut. 2015. Three dimensional face surfaces analysis using geodesic distance. J. Comput. Sci. Applic. 3 (2015), 67--72.Google ScholarGoogle Scholar
  3. B. Amberg, S. Romdhani, and T. Vetter. 2007. Optimal step nonrigid ICP algorithms for surface registration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). 1--8.Google ScholarGoogle Scholar
  4. A. N. Ansari and M. Abdel-Mottaleb. 2005. Automatic facial feature extraction and 3D face modeling using two orthogonal views with application to 3D face recognition. Pattern Recog. 38, 12 (2005), 2549--2563.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Berretti, A. Bimbo, and P. Pala. 2010. 3D face recognition using iso-geodesic stripes. IEEE Trans. Pattern Anal. Mach. Intell. 32, 12 (2010), 2162--2177.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Berretti, N. Werghi, A. D. Bimbo et al. 2013. Matching 3D face scans using interest points and local histogram descriptors. Comput. Graph. 37, 5 (2013), 509--525.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Berretti, N. Werghi, A. D. Bimbo, et al. 2014. Selecting stable key points and local descriptors for person identification using 3D face scans. Vis. Comput. 30, 11 (2014), 1275--1292.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. V. Blanz and T. Vetter. 2003. Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25, 9 (2003), 1063--1074.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Booth, A. Roussos, A. Ponniah, et al. 2018. Large scale 3D morphable models. Int. J. Comput. Vis. 126, 2--4 (2018), 233--254.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. M. Bronstein, M. M. Bronstein, R. Kimmel, et al. 2005. Three dimensional face recognition. Int. J. Comput. Vis. 64, 1 (2005), 5--30.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Cao, Y. Weng, K. Zhou, et al. 2014. FaceWarehouse: A 3D facial expression database for visual computing. IEEE Trans. Vis. Comput. Graph. 20, 3 (2014), 413--425.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Chen and B. Bhanu. 2007. Human ear recognition in 3D. IEEE Trans. Pattern Anal. Mach. Intell. 29, 4 (2007), 718--737.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. F. Cootes, G. J. Edwards, and C. J. Taylor. 2001. Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23, 6 (2001), 681--685.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. 1995. Active shape models—their training and application. Comput. Vis. Image Underst. 61, 1 (1995), 38--59.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Ding and D. Tao. 2015. Robust face recognition via multimodal deep face representation. IEEE Trans. Multimedia 17, 11 (2015), 2049--2058.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Dorai and A. K. Jain. 1997. COSMOS-A representation scheme for 3D free-form objects. IEEE Trans. Pattern Anal. Mach. Intell. 19, 10 (1997), 1115--1130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Drira, B. B. Amor, A. Srivastava, et al. 2013. 3D face recognition under expressions, occlusions, and pose variations. IEEE Trans. Pattern Anal. Mach. Intell. 35, 9 (2013), 2270--2283.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. Drira, B. B. Amor, A. Srivastava, and M. Daoudi. 2009. A Riemannian analysis of 3D nose shapes for partial human biometrics. In Proceedings of the IEEE International Conference on Computer Vision. 2050--2057.Google ScholarGoogle Scholar
  19. I. L. Dryden, A. Kume, Le Huiling, et al. 2008. A multi-dimensional scaling approach to shape analysis. Biometrika 95, 4 (2008), 779--798.Google ScholarGoogle ScholarCross RefCross Ref
  20. B. Efraty, E. Bilgazyev, S. Shah, et al. 2012. Profile-based 3D-aided face recognition. Pattern Recog. 45, 1 (2012), 43--53.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Emambakhsh and A. Evans. 2016. Nasal patches and curves for expression-robust 3D face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 5 (2016), 995--1007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Ferrari, G. Lisanti, S. Berretti, et al. 2017. A dictionary learning based 3D morphable shape model. IEEE Trans. Multimedia 19, 12 (2017), 2666--2058.Google ScholarGoogle ScholarCross RefCross Ref
  23. B. J. Frey and D. Dueck. 2007. Clustering by passing messages between data points. Science 315, 5814 (2007), 972--976.Google ScholarGoogle Scholar
  24. A. V. Gaikwad, S. J. Shigwan, and S. P. Awate. 2015. A statistical model for smooth shapes in Kendall shape space. In Medical Image Computing and Computer-Assisted Intervention (MICCAI'15), N. Navab, J. Hornegger, W. Wells, and A. Frangi (Eds.), Vol. 9351. 628--635.Google ScholarGoogle Scholar
  25. S. Ganguly, D. Bhattacharjee, and M. Nasipuri. 2017. Fuzzy matching of edge and curvature based features from range images for 3D face recognition. Intell. Autom. Soft Comput. 23, 1 (2017), 51--62.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Z. Gilani and A. Mian. 2016. Towards large-scale 3D face recognition. In Proceedings of the IEEE International Conference on Digital Image Computing: Techniques and Applications. 1--8.Google ScholarGoogle Scholar
  27. S. Gilani, A. Mian, and P. Eastwood. 2017. Deep, dense and accurate 3D face correspondence for generating population specific deformable models. Pattern Recog. 69 (2017), 238--250.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Z. Gilani, F. Shafait, and A. Mian. 2015. Shape-based automatic detection of a large number of 3D facial landmarks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4639--4648.Google ScholarGoogle Scholar
  29. B. Gokberk, A. Ali Salah, and L. Akarun. 2005. Rank-based decision fusion for 3D shape-based face recognition. Audio Video-based Biomet. Person Authent. 3246 (2005), 1019--1028.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. Hawraa, Z. Bilal, and K. Ahmed. 2019. 3D face factorisation for face recognition using pattern recognition algorithms. Cyber. Inf. Technol. 19, 2 (2019), 28--37.Google ScholarGoogle Scholar
  31. D. Huang, M. Ardabilian, Y. Wang, et al. 2012. 3-D face recognition using eLBP-based facial description and local feature hybrid matching. IEEE Trans. Inf. Forens. Sec. 7, 5 (2012), 1551--1565.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Jahanbin, H. Choi, Y. Liu, et al. 2008. Three dimensional face recognition using iso-geodesic and iso-depth curves. In Proceedings of the IEEE International Conference on Biometrics: Theory, Applications and Systems. 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  33. S. Jahanbin, R. Jahanbin, A. C. Bovik, et al. 2013. Passive three dimensional face recognition using iso-geodesic contours and procrustes analysis. Int. J. Comput. Vis. 105, 1 (2013), 87--108.Google ScholarGoogle ScholarCross RefCross Ref
  34. A. E. Johnson. 1997. Spin Images: A Representation for 3-D Surface Matching. Ph.D. Dissertation. Carnegie Mellon University, Pittsburgh, PA.Google ScholarGoogle Scholar
  35. M. Kafai, K. Eshghi, and B. Bhanu. 2014. Discrete cosine transform locality-sensitive hashes for face retrieval. IEEE Trans. Multimedia 16, 4 (2014), 1090--1103.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. G. Kendall. 1984. Shape manifolds, procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 2 (1984), 81--121.Google ScholarGoogle ScholarCross RefCross Ref
  37. P. Koppen, Z. Feng, J. Kittler, et al. 2018. Gaussian mixture 3D morphable face model. Pattern Recog. 74 (2018), 617--628.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Kurtek and H. Drira. 2015. A comprehensive statistical framework for elastic shape analysis of 3D faces. Comput. Graph. 51 (2015), 52--59.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y. Lei, M. Bennamoun, M. Hayat, et al. 2014. An efficient 3D face recognition approach using local geometrical signatures. Pattern Recog. 47, 2 (2014), 509--524.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Li, D. Huang, J. M. Morvan, et al. 2015. Towards 3D face recognition in the real: A registration-free approach using fine-grained matching of 3D keypoint descriptors. Int. J. Comput. Vis. 113, 2 (2015), 128--142.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. H. Li, J. Sun, Z. Xu, et al. 2017. Multimodal 2D+3D facial expression recognition with deep fusion convolutional neural network. IEEE Trans. Multimedia 19, 12 (2017), 2816--2831.Google ScholarGoogle ScholarCross RefCross Ref
  42. C. Lv, Z. Wu, X. Wang, and M. Zhou. 2019. 3D facial expression modeling based on facial landmarks in single image. Neurocomputing 355 (2019), 155--162.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. C. Lv, Z. Wu, X. Wang, M. Zhou, and K. Toh. 2019. Nasal similarity measure of 3D faces based on curve shape space. Pattern Recog. 88 (2019), 458--469.Google ScholarGoogle ScholarCross RefCross Ref
  44. C. Lv and J. Zhao. 2018. 3D face recognition based on local conformal parameterization and iso-geodesic stripes analysis. Math. Prob. Eng. 2018 (2018), 1--10.Google ScholarGoogle Scholar
  45. Z. Wang, M. Xu, Y. Ren, et al. 2018. Saliency detection in face videos: A data-driven approach. IEEE Trans. Multimedia 20, 6 (2018), 1335--1349.Google ScholarGoogle ScholarCross RefCross Ref
  46. S. A. Mahmood, R. F. Ghani, and A. A. Kerim. 2014. 3D face recognition using pose invariant nose region detector. In Proceedings of the Computer Science and Electronic Engineering Conference. 103--108.Google ScholarGoogle Scholar
  47. I. Mpiperis, S. Malassiotis, and M. G. Strintzis. 2008. Bilinear models for 3-D face and facial expression recognition. IEEE Trans. Inf. Forens. Sec. 3, 3 (2008), 498--511.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. A. Ouamane, A. Chouchane, et al. 2017. Efficient tensor-based 2D+3D face verification. IEEE Trans. Inf. Forens. Sec. 12, 11 (2017), 2751--2762.Google ScholarGoogle ScholarCross RefCross Ref
  49. A. Patel and W. A. P. Smith. 2015. Manifold-based constraints for operations in face space. Pattern Recog. 52 (2015), 206--217.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. A. P. Pentland. 1991. Face recognition using eigenfaces. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 586--591.Google ScholarGoogle Scholar
  51. P. Perakis, G. Passalis, T. Theoharis, and I. Kakadiaris. 2013. 3D facial landmark detection under large yaw and expression variations. IEEE Trans. Pattern Anal. Mach. Intell. 35, 7 (2013), 1552--1564.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. P. J. Phillips, P. J. Flynn, T. Scruggs, et al. 2006. Preliminary face recognition grand challenge results. Autom. Face Gest. Recog. 15--24.Google ScholarGoogle Scholar
  53. A. Savran, N. Alyuz, H. Dibeklioglu, et al. 2008. Bosphorus database for 3D face analysis. In Proceedings of the 1st COST 2101 Workshop on Biometrics and Identity Management. 47--56.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. S. Schwab, T. Chateau, C. Blanc, and L. Trassoudaine. 2013. A multi-cue spatio-temporal framework for automatic frontal face clustering in video sequences. Eurasip J. Image Vid. Proc. 2013, 1 (Jan. 2013), 1--12.Google ScholarGoogle Scholar
  55. D. Smeets, J. Keustermans, D. Vandermeulen, et al. 2013. MeshSIFT: Local surface features for 3D face recognition under expression variations and partial data. Comput. Vis. Image Underst. 117, 2 (2013), 158--169.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. S. Soltanpour and Q. Wu. 2019. Weighted extreme sparse classifier and local derivative pattern for 3D face recognition. IEEE Trans. Image Proc. 28, 6 (2019), 3020--3033.Google ScholarGoogle ScholarCross RefCross Ref
  57. F. M. Sukno, J. L. Waddington, and P. F. Whelan. 2015. 3-D facial landmark localization with asymmetry patterns and shape regression from incomplete local features. IEEE Trans. Cyber. 45, 9 (2015), 1717--1730.Google ScholarGoogle ScholarCross RefCross Ref
  58. V. Surazhsky, T. Surazhsky, D. Kirsanov, et al. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3 (2005), 553--560.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Y. Tang, H. Li, X. Sun, et al. 2017. Principal curvature measures estimation and application to 3D face recognition. J. Math. Imag. Vis. 2017, 3 (2017), 1--23.Google ScholarGoogle Scholar
  60. Y. Wang, G. Pan, Z. Wu, and Y. Wang. 2006. Exploring facial expression effects in 3D face recognition using partial ICP. In Proceedings of the Asian Conference on Computer Vision. 3851 (2006), 581--590.Google ScholarGoogle Scholar
  61. P. Yan and K. W. Bowyer. 2007. Biometric recognition using 3D ear shape. IEEE Trans. Pattern Anal. Mach. Intell. 29, 8 (2007), 1297--1308.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. L. Yuan, W. Liu, and Y. Li. 2016. Non-negative dictionary based sparse representation classification for ear recognition with occlusion. Neurocomputing 171, C (2016), 540--550.Google ScholarGoogle Scholar
  63. W. Zeng, D. Samaras, and X. Gu. 2010. Ricci flow for 3D shape analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 4 (2010), 662--677.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. L. Zhang, L. Li, H. Li, et al. 2016. 3D ear identification using block-wise statistics-based features and LC-KSVD. IEEE Trans. Multimedia 18, 8 (2016), 1531--1541.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. X. Zhu, Z. Lei, J. Yan, et al. 2015. High-fidelity pose and expression normalization for face recognition in the wild. Comput. Vis. Pattern Recog. 787--796.Google ScholarGoogle Scholar

Index Terms

  1. 3D Facial Similarity Measurement and Its Application in Facial Organization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Multimedia Computing, Communications, and Applications
        ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 16, Issue 3
        August 2020
        364 pages
        ISSN:1551-6857
        EISSN:1551-6865
        DOI:10.1145/3409646
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 July 2020
        • Online AM: 7 May 2020
        • Revised: 1 April 2020
        • Accepted: 1 April 2020
        • Received: 1 November 2019
        Published in tomm Volume 16, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format