skip to main content
research-article

Error Analysis of Some Operations Involved in the Cooley-Tukey Fast Fourier Transform

Published:19 May 2020Publication History
Skip Abstract Section

Abstract

We are interested in obtaining error bounds for the classical Cooley-Tukey fast Fourier transform algorithm in floating-point arithmetic, for the 2-norm as well as for the infinity norm. For that purpose, we also give some results on the relative error of the complex multiplication by a root of unity, and on the largest value that can take the real or imaginary part of one term of the fast Fourier transform of a vector x, assuming that all terms of x have real and imaginary parts less than some value b.

References

  1. G. Bennett and G. Jameson. 2000. Monotonic averages of convex functions. J. Math. Anal. Appl. 252, 1 (2000), 410--430. DOI:https://doi.org/10.1006/jmaa.2000.7087Google ScholarGoogle ScholarCross RefCross Ref
  2. R. P. Brent, C. Percival, and P. Zimmermann. 2007. Error bounds on complex floating-point multiplication. Math. Comp. 76 (2007), 1469--1481.Google ScholarGoogle ScholarCross RefCross Ref
  3. D. Calvetti. 1991. A stochastic roundoff error analysis for the fast Fourier transform. Math. Comp. 56, 194 (1991), 755--774.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. Cooley and J. Tukey. 1965. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 90 (1965), 297--301.Google ScholarGoogle ScholarCross RefCross Ref
  5. P. Duhamel and M. Vetterli. 1990. Fast Fourier transforms: A tutorial review and a state of the art. Signal Process. 19 (1990), 259--299.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. W. Gentleman and G. Sande. 1966. Fast Fourier transforms—For fun and profit. In Proceedings of the Fall Joint Computer Conference. 563--578.Google ScholarGoogle Scholar
  7. M. Heidemann, D. Johnson, and C. Burrus. 1984. Gauss and the history of the fast Fourier transform. IEEE ASSP Mag. 1, 4 (Oct. 1984), 14--21.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. Henrici. 1986. Applied and Computational Complex Analysis. Vol. 3. Wiley, New York, NY.Google ScholarGoogle Scholar
  9. N. J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). SIAM, Philadelphia, PA.Google ScholarGoogle Scholar
  10. IEEE Computer Society. 2008. 754-2008—IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008. Retrieved April 6, 2020 from http://ieeexplore.ieee.org/servlet/opac?punumber=4610933.Google ScholarGoogle Scholar
  11. C.-P. Jeannerod, P. Kornerup, N. Louvet, and J.-M. Muller. 2017. Error bounds on complex floating-point multiplication with an FMA. Math. Comp. 86, 304 (2017), 881--898. DOI:https://doi.org/10.1090/mcom/3123Google ScholarGoogle ScholarCross RefCross Ref
  12. C.-P. Jeannerod, N. Louvet, and J.-M. Muller. 2013. Further analysis of Kahan’s algorithm for the accurate computation of 2 × 2 determinants. Math. Comp. 82, 284 (Oct. 2013), 2245--2264. DOI:https://doi.org/10.1090/S0025-5718-2013-02679-8Google ScholarGoogle ScholarCross RefCross Ref
  13. D. E. Knuth. 1998. The Art of Computer Programming (3rd ed.). Vol. 2. Addison-Wesley, Reading, MA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. V. Oppenheim and R. W. Schafer. 2010. Discrete-Time Signal Processing. Prentice Hall.Google ScholarGoogle Scholar
  15. C. Percival. 2002. Rapid multiplication modulo the sum and difference of highly composite numbers. Math. Comp. 72 (2002), 387--395.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. G. Plonka and M. Tasche. 2005. Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra Appl. 394 (2005), 309--345.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Ramos. 1971. Roundoff error analysis of the fast Fourier transform. Math. Comp. 25, 116 (1971), 757--768.Google ScholarGoogle ScholarCross RefCross Ref
  18. B. Salvy and P. Zimmermann. 1994. GFUN: A maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20, 2 (June 1994), 163--177. DOI:https://doi.org/10.1145/178365.178368Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Schatzman. 1996. Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM J. Sci. Comput. 17, 5 (1996), 1150--1166.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Schönhage and V. Strassen. 1971. Schnelle Multiplikation grosser Zahlen. Computing (Arch. Elektron. Rechnen) 7 (1971), 281--292. DOI:https://doi.org/10.1007/bf02242355 In German.Google ScholarGoogle Scholar
  21. M. Tasche and H. Zeuner. 2001. Worst and average case roundoff error analysis for FFT. BIT 41, 3 (June 2001), 563--581. DOI:https://doi.org/10.1023/A:1021923430250Google ScholarGoogle ScholarCross RefCross Ref
  22. C. Van Loan. 1992. Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics, Vol. 10. SIAM, Philadelphia, PA. DOI:https://doi.org/10.1137/1.9781611970999Google ScholarGoogle Scholar
  23. H. Wilson and U. Keich. 2016. Accurate pairwise convolutions of non-negative vectors via FFT. Comput. Statist. Data Anal. 101 (2016), 300--315. DOI:https://doi.org/10.1016/j.csda.2016.03.010Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Error Analysis of Some Operations Involved in the Cooley-Tukey Fast Fourier Transform

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Mathematical Software
        ACM Transactions on Mathematical Software  Volume 46, Issue 2
        June 2020
        274 pages
        ISSN:0098-3500
        EISSN:1557-7295
        DOI:10.1145/3401021
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 May 2020
        • Revised: 1 October 2019
        • Accepted: 1 October 2019
        • Received: 1 December 2018
        Published in toms Volume 46, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format