skip to main content
research-article

Oblivious Resampling Oracles and Parallel Algorithms for the Lopsided Lovász Local Lemma

Published:31 December 2020Publication History
Skip Abstract Section

Abstract

The Lovász Local Lemma (LLL) shows that, for a collection of “bad” events B in a probability space that are not too likely and not too interdependent, there is a positive probability that no events in B occur. Moser and Tardos (2010) gave sequential and parallel algorithms that transformed most applications of the variable-assignment LLL into efficient algorithms. A framework of Harvey and Vondrák (2015) based on “resampling oracles” extended this to sequential algorithms for other probability spaces satisfying a generalization of the LLL known as the Lopsided Lovász Local Lemma (LLLL).

We describe a new structural property that holds for most known resampling oracles, which we call “obliviousness.” Essentially, it means that the interaction between two bad-events B, B depends only on the randomness used to resample B and not the precise state within B itself.

This property has two major consequences. First, combined with a framework of Kolmogorov (2016), it leads to a unified parallel LLLL algorithm, which is faster than previous, problem-specific algorithms of Harris (2016) for the variable-assignment LLLL and of Harris and Srinivasan (2014) for permutations. This gives the first RNC algorithms for rainbow perfect matchings and rainbow Hamiltonian cycles of Kn.

Second, this property allows us to build LLLL probability spaces from simpler “atomic” events. This gives the first resampling oracle for rainbow perfect matchings on the complete s-uniform hypergraph Kn(s) and the first commutative resampling oracle for Hamiltonian cycles of Kn.

References

  1. D. Achlioptas and F. Iliopoulos. 2016. Random walks that find perfect objects and the Lovász Local Lemma. J. ACM 63, 3 (2016), Article # 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Achlioptas and F. Iliopoulos. 2016. Focused stochastic local search and the Lovász local lemma. In Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA’16), pp. 20248--2038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Achlioptas, F. Iliopoulos, and A. Sinclair. 2019. Beyond the Lovász Local Lemma: Point to set correlations and their algorithmic applications. In Proceedings of the 60th IEEE Symposium on Foundations of Computer Science (FOCS’19). 725--744.Google ScholarGoogle Scholar
  4. M. Albert, A. Frieze, and B. Reed. 1995. Multicoloured Hamilton cycles. Electronic J. Combinat. 2, 1 (1995), R10.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. Bissacot, R. Fernandez, A. Procacci, and B. Scoppola. 2011. An improvement of the Lovász Local Lemma via cluster expansion. Combinat., Probabil. Comput. 20, 5 (2011), 709--719. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. Blelloch, J. Fineman, and J. Shun. 2012. Greedy sequential maximal independent set and matching are parallel on average. In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’12). 308--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto. 2015. A lower bound for the distributed Lovász Local Lemma. In Proceedings of the 48th ACM Symposium on Theory of Computing (STOC’15). 479--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. Chung, S. Pettie, and H. Su. 2017. Distributed algorithms for the Lovász local lemma and graph coloring. Distributed Computing 30, 4 (2017), 261--2680. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Cook. 1985. A taxonomy of problems with fast parallel algorithms. Info. Control 64, 1--3 (1985), 2--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Erdős and J. Spencer. 1990. Lopsided Lovász Local Lemma and Latin transversals. Discrete Appl. Math 30, (2, 3) (1990), 151--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Fischer and M. Ghaffari. 2017. Sublogarithmic distributed algorithms for Lovász Local lemma, and the complexity hierarchy. In Proceedings of the 31st International Symposium on Distributed Computing (DISC’17). 18.Google ScholarGoogle Scholar
  12. M. Fischer and A. Noever. 2019. Tight analysis of randomized greedy MIS. ACM Trans. Algor. 16, 1 (2019), Article #6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Ghaffari, D. Harris, and F. Kuhn. 2018. On derandomizing local distributed algorithms. In Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS’18). 662--673.Google ScholarGoogle Scholar
  14. A. Graf and P. Haxell. 2018. Finding independent transversals efficiently. arXiv:1811.02687.Google ScholarGoogle Scholar
  15. A. Graf, D. Harris, and P. Haxell. 2019. Algorithms for weighted independent transversals and strong colouring. arXiv:1907.00033.Google ScholarGoogle Scholar
  16. B. Haeupler and D. Harris. 2017. Parallel algorithms and concentration bounds for the Lovász Local Lemma via witness DAGs. ACM Trans. Algor. 13, 4 (2017), Article #53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Haeupler, B. Saha, and A. Srinivasan. 2011. New constructive aspects of the Lovász Local Lemma. J. ACM 58, 6 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Harris. 2016. Lopsidependency in the Moser-Tardos framework: Beyond the Lopsided Lovász Local Lemma. ACM Trans. Algor. 13, 1 (2016), Article #17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Harris. 2020. New bounds for the Moser-Tardos distribution. Random Struct. Algor. 57, 1 (2020), 97--131.Google ScholarGoogle ScholarCross RefCross Ref
  20. D. Harris. 2019. Deterministic algorithms for the Lovász Local Lemma: Simpler, more general, and more parallel. arXiv:1909.08065.Google ScholarGoogle Scholar
  21. D. Harris and A. Srinivasan. 2017. Algorithmic and enumerative aspects of the Moser-Tardos distribution. ACM Trans. Algor. 13, 3 (2017), Article #33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Harris and A. Srinivasan. 2017. A constructive Lovász Local Lemma for permutations. Theory Comput. 13, 17 (2017), 1--41.Google ScholarGoogle ScholarCross RefCross Ref
  23. D. Harris and A. Srinivasan. 2019. The Moser-Tardos framework with partial resampling. J. ACM 66, 5 (2019), Article #36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. Harvey and C. Liaw. 2017. Rainbow Hamilton cycles and lopsidependency. Discrete Math. 340, 6 (2017), 1261--1270.Google ScholarGoogle ScholarCross RefCross Ref
  25. N. Harvey and J. Vondrák. 2020. An algorithmic proof of the Lopsided Lovász Local Lemma via resampling oracles. SIAM J. Comput. 49, 2 (2020), 394--428.Google ScholarGoogle ScholarCross RefCross Ref
  26. P. Haxell. 2008. An improved bound for the strong chromatic number. J. Graph Theory 58, 2 (2008), 148--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. F. Iliopoulos. 2018. Commutative algorithms approximate the LLL distribution. In Proceedings of the Conference on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM’18), pp. 44:1--44:20.Google ScholarGoogle Scholar
  28. K. Kolipaka and M. Szegedy. 2011. Moser and Tardos meet Lovász. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC’11). 235--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. V. Kolmogorov. 2018. Commutativity in the algorithmic Lovász Local Lemma. SIAM J. Comput. 47, 6 (2018), 2029--2056.Google ScholarGoogle ScholarCross RefCross Ref
  30. L. Lu, A. Mohr, and L. Székely. 2012. Quest for negative dependency graphs. Recent Advances in Harmonic Analysis and Applications. Springer, pp. 243-256.Google ScholarGoogle Scholar
  31. L. Lu and L. Székély. 2007. Using Lovász Local Lemma in the space of random injections. Electronic J. Combinat. 13-R63 (2007).Google ScholarGoogle Scholar
  32. L. Lu and L. Székély. 2011. A new asymptotic enumeration technique: The Lovász local lemma. arXiv:0905.3983 (2011).Google ScholarGoogle Scholar
  33. M. Luby. 1996. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 4 (1996), 1036--1053. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. C. McDiarmid. 1995. Hypergraph coloring and the Lovász Local Lemma. J. Discrete Math. 167--168 (1995), 481-486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. Moser and G. Tardos. 2010. A constructive proof of the general Lovász Local Lemma. J. ACM 57, 2 (2010), Article #11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. W. Pegden. 2014. An extension of the Moser-Tardos algorithmic Local Lemma. SIAM J. Discrete Math. 28, 2 (2014), 911--917.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. B. Shearer. 1985. On a problem of Spencer. Combinatorica 5, 3 (1985), 241--245. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Oblivious Resampling Oracles and Parallel Algorithms for the Lopsided Lovász Local Lemma

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Algorithms
          ACM Transactions on Algorithms  Volume 17, Issue 1
          January 2021
          335 pages
          ISSN:1549-6325
          EISSN:1549-6333
          DOI:10.1145/3446616
          • Editor:
          • Edith Cohen
          Issue’s Table of Contents

          Copyright © 2020 Public Domain

          This paper is authored by an employee(s) of the United States Government and is in the public domain. Non-exclusive copying or redistribution is allowed, provided that the article citation is given and the authors and agency are clearly identified as its source.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 31 December 2020
          • Online AM: 7 May 2020
          • Accepted: 1 March 2020
          • Revised: 1 December 2019
          • Received: 1 October 2018
          Published in talg Volume 17, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format