skip to main content
survey

A Survey on Device-free Indoor Localization and Tracking in the Multi-resident Environment

Authors Info & Claims
Published:11 July 2020Publication History
Skip Abstract Section

Abstract

Indoor device-free localization and tracking can bring both convenience and privacy to users compared with traditional solutions such as camera-based surveillance and RFID tag-based tracking. Technologies such as Wi-Fi, wireless sensor, and infrared have been used to localize and track people living in care homes and office buildings. However, the presence of multiple residents introduces further challenges, such as the ambiguity in sensor measurements and target identity, to localization and tracking. In this article, we survey the latest development of device-free indoor localization and tracking in the multi-resident environment. We first present the fundamentals of device-free localization and tracking. Then, we discuss and compare the technologies used in device-free indoor localization and tracking. After discussing the steps involved in multi-resident localization and tracking including target detection, target counting, target identification, localization, and tracking, the techniques related to each step are classified and discussed in detail along with the performance metrics. Finally, we identify the research gap and point out future research directions. To the best of our knowledge, this survey is the most comprehensive work that covers a wide spectrum of the research area of device-free indoor localization and tracking.

References

  1. A. L. Ballardini, L. Ferretti, S. Fontana, A. Furlan, and D. G. Sorrenti. 2016. An indoor localization system for telehomecare applications. IEEE Trans. Syst. Man Cybernet. Syst. 46, 10 (2016), 1445--1455.Google ScholarGoogle ScholarCross RefCross Ref
  2. K. N. Ha, K. C. Lee, and S. Lee. 2006. Development of PIR sensor based indoor location detection system for smart home. In Proceedings of the SICE-ICASE International Joint Conference. 2162--2167.Google ScholarGoogle Scholar
  3. M. Valtonen, T. Vuorela, L. Kaila, and J. Vanhala. 2012. Capacitive indoor positioning and contact sensing for activity recognition in smart homes. J. Ambient Intell. Smart Environ. 4, 4 (2012), 305--334.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, P. Zhang, W. Xi, and Z. Jiang. 2014. Twins: Device-free object tracking using passive tags. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’14). 469--476.Google ScholarGoogle Scholar
  5. F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao. 2012. A reliable and accurate indoor localization method using phone inertial sensors. In Proceedings of the ACM Conference on Pervasive and Ubiquitous Computing (Ubicomp’12) 2012.Google ScholarGoogle Scholar
  6. Z. Jiang, J. Zhao, J. Han, S. Tang, J. Zhao, and W. Xi. 2013. Wi-fi fingerprint based indoor localization without indoor space measurement. In Proceedings of the 2013 IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems. 384--392.Google ScholarGoogle Scholar
  7. V. Moreno, M. A. Zamora, and A. F. Skarmeta. 2016. A low-cost indoor localization system for energy sustainability in smart buildings. IEEE Sens. J. 16, 9 (2016), 3246--3262.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Tao, M. Kudo, and H. Nonaka. 2012. Privacy-preserved behavior analysis and fall detection by an infrared ceiling sensor network. Sensors (Basel) 12, 12 (2012), 16920--36.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. Zhang, J. Ma, Q. Chen, and L. M. Ni. 2007. An RF based system for tracking transceiver-free objects. In Proceedings of the 5th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom’07). 135--144.Google ScholarGoogle Scholar
  10. D. Lieckfeldt, J. You, and D. Timmermann. 2009. Passive tracking of transceiver-free users with RFID. In Proceedings of the International Conference on Intelligent Interactive Assistance and Mobile Multimedia Computing. Springer, Berlin, Heidelberg, 319--329.Google ScholarGoogle Scholar
  11. H. Kavalionak, E. Carlini, A. Lulli, C. Gennaro, G. Amato, C. Meghini, and L. Ricci. 2017. A prediction-based distributed tracking protocol for video surveillance. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC’17). 140--145.Google ScholarGoogle Scholar
  12. M. Shankar, J. B. Burchett, Q. Hao, B. D. Guenther, and D. J. Brady. 2006. Human-tracking systems using pyroelectric infrared detectors. Opt. Eng. 45, 10 (2006), 106401.Google ScholarGoogle ScholarCross RefCross Ref
  13. Q. Hao, D. J. Brady, B. D. Guenther, J. B. Burchett, M. Shankar, and S. Feller. 2006. Human tracking with wireless distributed pyroelectric sensors. IEEE Sens. J. 6, 6 (2006), 1683--1696.Google ScholarGoogle ScholarCross RefCross Ref
  14. Y. Kasama and T. Miyazaki. 2012. Simultaneous estimation of the number of humans and their movement loci in a room using infrared sensors. In Proceedings of the 2012 26th International Conference on Advanced Information Networking and Applications Workshops. 508--513.Google ScholarGoogle Scholar
  15. T. W. Hnat, E. Griffiths, R. Dawson, and K. Whitehouse. 2012. Doorjamb: Unobtrusive room-level tracking of people in homes using doorway sensors. In Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems. 309--322.Google ScholarGoogle Scholar
  16. T. Grosse-Puppendahl, X. Dellangnol, C. Hatzfeld, B. Fu, M. Kupnik, A. Kuijper, M. R. Hastall, J. Scott, and M. Gruteser. 2016. Platypus—Indoor localization and identification through sensing electric potential changes in human bodies. In Proceedings of the 14th ACM International Conference on Mobile Systems, Applications, and Services. 17--30.Google ScholarGoogle Scholar
  17. S. Palipana, B. Pietropaoli, and D. Pesch. 2017. Recent advances in RF-based passive device-free localisation for indoor applications. Ad Hoc Netw. 64 (2017), 80--98.Google ScholarGoogle ScholarCross RefCross Ref
  18. H. Liu, H. Darabi, P. Banerjee, and J. Liu. 2007. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybernet. C 37, 6 (2007), 1067--1080.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni. 2016. A survey on wireless indoor localization from the device perspective. ACM Comput. Surv. 49, 2 (2016), 1--31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. Gu, X. Hu, M. Ramezani, D. Acharya, K. Khoshelham, S. Valaee, and J. Shang. 2019. Indoor localization improved by spatial context—A survey. ACM Comput. Surv. 52, 3 (2019), 1--35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. F. Khelifi, A. Bradai, A. Benslimane, P. Rawat, and M. Atri. 2019. A survey of localization systems in internet of things. Mobile Netw. Appl. 24, 3 (2019), 761--785.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Youssef, M. Mah, and A. Agrawala. 2007. Challenges device-free passive localization for wireless environment. In Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking. 222—229.Google ScholarGoogle Scholar
  23. D. Lieckfeldt, J. You, and D. Timmermann. 2009. Exploiting RF-scatter: Human localization with bistatic passive UHF RFID-systems. In Proceedings of the 2009 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications. 179--184.Google ScholarGoogle Scholar
  24. F. Wang, J. Feng, Y. Zhao, X. Zhang, S. Zhang, and J. Han. 2019. Joint activity recognition and indoor localization with wi-fi fingerprints. IEEE Access 7, (2019), 80058--80068.Google ScholarGoogle Scholar
  25. Y. Kilic, H. Wymeersch, A. Meijerink, M. J. Bentum, and W. G. Scanlon. 2013. An experimental study of UWB device-free person detection and ranging. In Proceedings of the 2013 IEEE International Conference on Ultra-Wideband (ICUWB’13), 2013 43--48.Google ScholarGoogle ScholarCross RefCross Ref
  26. I. Vlasenko, I. Nikolaidis, and E. Stroulia. 2015. The smart-condo: Optimizing sensor placement for indoor localization. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 3 (2015), 436--453Google ScholarGoogle ScholarCross RefCross Ref
  27. W. Chen, M. Guan, L. Wang, R. Ruby, and K. Wu∗. 2017. “FLoc: Device-free passive indoor localization in complex environments. In Proceedings of the IEEE Ad-Hoc and Sensor Networking Symposium (ICC 2017). 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  28. Y. Liu, Y. Zhao, L. Chen, J. Pei, and J. Han. 2012. Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays. IEEE Trans. Parallel Distrib. Syst. 23, 11 (2012), 2138--2149.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. W. Ruan, Q. Z. Sheng, L. Yao, T. Gu, M. Ruta, and L. Shangguan. 2016. Device-free indoor localization and tracking through human-object interactions. In Proceedings of the 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM’16). 1--9.Google ScholarGoogle Scholar
  30. W. Ruan, Q. Z. Sheng, L. Yao, X. Li, N. J. G. Falkner, and L. Yang. 2018. Device-free human localization and tracking with UHF passive RFID tags: A data-driven approach. J. Netw. Comput. Appl. 104, (2018), 78--96.Google ScholarGoogle Scholar
  31. L. Ma, M. Liu, H. Wang, Y. Yang, N. Wang, and Y. Zhang. 2018. WallSense: Device-free indoor localization using wall-mounted UHF RFID tags. Sensors (Basel) 19, 1 (2018), 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Moussa and M. Youssef. 2009. Smart devices for smart environments: Device-free passive detection in real environments. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications, Galveston. 1--6.Google ScholarGoogle Scholar
  33. J. Wang, H. Jiang, J. Xiong, X. Chen, D. Fang, K. Jamieson, and B. Xie. 2016. LiFS: Low human-effort, device-free localization with fine-grained subcarrier information. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. 234--256.Google ScholarGoogle Scholar
  34. F. Adib and D. Katabi. 2013. See throughwalls with Wi-Fi! In Proceedings of the ACM Special Interest Group on Data Communications Conference (SIGCOMM’13). 75--86.Google ScholarGoogle Scholar
  35. D. Zhang, Y. Liu, and L. M. Ni. 2011. RASS: A real-time, accurate and scalable system for tracking transceiver-free objects. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications. 197--204.Google ScholarGoogle Scholar
  36. J. Wilson and N. Patwari. 2010. Radio tomographic imaging with wireless networks. IEEE Trans. Mobile Comput. 9, 5 (2010), 621--632.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Wang, D. Fang, X. Chen, Z. Yang, T. Xing, and L. Cai. 2013. LCS: Compressive sensing based device-free localization for multiple targets in sensor networks. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM’13). 145--149.Google ScholarGoogle Scholar
  38. Y. Kilic, H. Wymeersch, A. Meijerink, M. J. Bentum, and W. G. Scanlon. 2013. Device-free person detection and ranging in UWB networks. IEEE J. Select. Top. Sign. Process. 8, 1 (2013), 1--12.Google ScholarGoogle Scholar
  39. A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami, M. A. Al-Ammar, and H. S. Al-Khalifa. 2016. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors (Basel) 16, 5 (2016), 16.Google ScholarGoogle ScholarCross RefCross Ref
  40. B. Gulmezoglu, M. B. Guldogan, and S. Gezici. 2015. Multiperson tracking with a network of ultrawideband radar sensors based on gaussian mixture PHD filters. IEEE Sens. J. 15, 4 (2015), 2227--2237.Google ScholarGoogle ScholarCross RefCross Ref
  41. F. Liang, F. Qi, Q. An, H. Lv, F. Chen, Z. Li, and J. Wang. 2016. Detection of multiple stationary humans using UWB MIMO radar. Sensors (Basel) 16, 11 (2016), 16.Google ScholarGoogle ScholarCross RefCross Ref
  42. D. Yang, W. Sheng, and R. Zeng. 2015. Indoor human localization using PIR sensors and accessibility map. In Proceedings of the 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. 577--581.Google ScholarGoogle Scholar
  43. X. Luo, T. Liu, B. Shen, Q. Chen, L. Gao, and X. Luo. 2016. Human indoor localization based on ceiling mounted PIR sensor nodes. In Proceedings of the 2016 13th IEEE Annual Consumer Communications 8 Networking Conference (CCNC’16). 868--874.Google ScholarGoogle Scholar
  44. H. Qi, H. Fei, and X. Yang. 2009. Multiple human tracking and identification with wireless distributed pyroelectric sensor systems. IEEE Syst. J. 3, 4 (2009), 428--439.Google ScholarGoogle ScholarCross RefCross Ref
  45. B. Yang, J. Luo, and Q. Liu. 2014. A novel low-cost and small-size human tracking system with pyroelectric infrared sensor mesh network. Infrared Phys. Technol. 63 (2014), 147--156.Google ScholarGoogle ScholarCross RefCross Ref
  46. S. Tao, M. Kudo, B.-N. Pei, H. Nonaka, and J. Toyama. 2015. Multiperson locating and their soft tracking in a binary infrared sensor network. IEEE Trans. Hum.-Mach. Syst. 45, 5 (2015), 550--561.Google ScholarGoogle ScholarCross RefCross Ref
  47. A. Braun, H. Heggen, and R. Wichert. 2012. CapFloor—A flexible capacitive indoor localization system. In Evaluating AAL Systems through Competitive Benchmarking, Indoor Localization, and Tracking: International Competition (EvAAL 2011), Revised Selected Papers, S. Chessa and S. Knauth, eds. Springer, Berlin, 2012, pp. 26--35,.Google ScholarGoogle Scholar
  48. B. Fu, F. Kirchbuchner, J. von Wilmsdorff, T. Grosse-Puppendahl, A. Braun, and A. Kuijper. 2018. Performing indoor localization with electric potential sensing. J. Ambient Intell. Hum. Comput. 10, 2 (2018), 731--746.Google ScholarGoogle ScholarCross RefCross Ref
  49. X. Bian, G. D. Abowd, and J. M. Rehg. Using sound source localization in a home environment. Perv. Comput. 19--36.Google ScholarGoogle Scholar
  50. P. Zappi, E. Farella, and L. Benini. 2007. Enhancing the spatial resolution of presence detection in a PIR based wireless surveillance network. In Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based Surveillance. 295--300.Google ScholarGoogle Scholar
  51. P. Zappi, E. Farella, and L. Benini. 2008. Pyroelectric infrared sensors based distance estimation. In Proceedings of the 2008 IEEE Internaional Symposium on Inertial Sensors and Systems (SENSORS’08). 716--719.Google ScholarGoogle Scholar
  52. P. Zappi, E. Farella, and L. Benini. 2010. Tracking motion direction and distance with pyroelectric IR sensors. IEEE Sens. J. 10, 9 (2010), 1486--1494.Google ScholarGoogle ScholarCross RefCross Ref
  53. H. Zou, Y. Zhou, J. Yang, W. Gu, L. Xie, and C. Spanos. 2017. FreeDetector: Device-free occupancy detection with commodity wi-fi. In Proceedings of the 2017 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops’17). 1--5.Google ScholarGoogle Scholar
  54. A. E. Kosba, A. Saeed, and M. Youssef. 2012. RASID: A robust WLAN device-free passive motion detection system. In Proceedings of the 2012 IEEE International Conference on Pervasive Computing and Communications. 531--533.Google ScholarGoogle Scholar
  55. J. Xiao, K. Wu, Y. Yi, L. Wang, and L. M. Ni. 2013. Pilot: Passive device-free indoor localization using channel state information. In Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems. 236--245.Google ScholarGoogle Scholar
  56. J. Xiao, K. Wu, Y. Yi, L. Wang, and L. M. Ni. 2012. FIMD: Fine-grained device-free motion detection. In Proceedings of the 2012 IEEE 18th International Conference on Parallel and Distributed Systems. 229--235.Google ScholarGoogle Scholar
  57. L. Gong, W. Yang, Z. Zhou, D. Man, H. Cai, X. Zhou, and Z. Yang. 2016. An adaptive wireless passive human detection via fine-grained physical layer information. Ad Hoc Netw. 38 (2016), 38--50.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. T. Xin, B. Guo, Z. Wang, P. Wang, J. C. K. Lam, V. Li, and Z. Yu. 2018. FreeSense: A robust approach for indoor human detection using wi-fi signals. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 2, 3 (2018), 1--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. K. Qian, C. Wu, Z. Yang, Y. Liu, and Z. Zhou. 2014. PADS: Passive detection of moving targets with dynamic speed using PHY layer information. In Proceedings of the 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS’14). 1--8.Google ScholarGoogle Scholar
  60. J. Lv, D. Man, W. Yang, X. Du, and M. Yu. 2018. Robust WLAN-based indoor intrusion detection using PHY layer information. IEEE Access 6 (2018), 30117--30127.Google ScholarGoogle ScholarCross RefCross Ref
  61. Z. Yuan, S. Wu, X. Yang, and A. He. Device-free stationary human detection with wi-fi in through-the-wall scenarios. In Proceedings of the 10th EAI International Conference on Wireless and Satellite Systems (WiSATS’19). 201--208.Google ScholarGoogle Scholar
  62. Y. Zhao, N. Patwari, J. M. Phillips, and S. Venkatasubramanian. 2013. Radio tomographic imaging and tracking of stationary and moving people via kernel distance. In Proceedings of the 2013 ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). 229--240.Google ScholarGoogle Scholar
  63. A. Milan, S. Roth, K. Schindler, and M. Kudo. 2014. Privacy preserving multi-target tracking. Proceedings of the Asian Conference on Computer Vision (ACCV’14), Lecture Notes in Computer Science. Springer, Cham, 519--530.Google ScholarGoogle Scholar
  64. S. Palipana, P. Agrawal, and D. Pesch. 2016. Channel state information based human presence detection using non-linear techniques. In Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments (BuildSys’16). 177--186.Google ScholarGoogle Scholar
  65. Z. Zhou, Z. Yang, C. Wu, L. Shangguan, and Y. Liu. 2013. Towards omnidirectional passive human detection. In Proceedings of the IEEE International Conference on Computer Communcations (INFOCOM’13). 3057--3065.Google ScholarGoogle Scholar
  66. F. Xiao, X. Xie, H. Zhu, L. Sun, and R. Wang. 2015. Invisible cloak fails: CSI-based passive human detection. In Proceedings of the 1st Workshop on Context Sensing and Activity Recognition (CSAR’15). 19--23.Google ScholarGoogle Scholar
  67. C. Li, J. Ling, J. Li, and J. Lin. 2010. Accurate doppler radar noncontact vital sign detection using the RELAX algorithm. IEEE Trans. Instr. Meas. 59, 3 (2010), 687--695.Google ScholarGoogle ScholarCross RefCross Ref
  68. N. Patwari, J. Wilson, S. Ananthanarayanan, S. K. Kasera, and D. R. Westenskow. 2014. Monitoring breathing via signal strength in wireless networks. IEEE Trans. Mobile Comput. 13, 8 (2014), 1774-1786.Google ScholarGoogle ScholarCross RefCross Ref
  69. O. J. Kaltiokallio, S. Yigitler, R. Jntti, and N. Patwari. 2014. Non-invasive respiration rate monitoring using a single COTS TX-RX pair. In Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. 59--70.Google ScholarGoogle Scholar
  70. X. Liu, J. Cao, S. Tang, and J. Wen. 2014. Wi-Sleep: Contactless sleep monitoring via Wi-Fi signals. In Proceedings of the 2014 IEEE Real-Time Systems Symposium. 346--355.Google ScholarGoogle Scholar
  71. C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao. 2015. Non-invasive detection of moving and stationary human with wi-fi. IEEE J. Select. Areas Commun. 33, 11 (2015), 2329--2342.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. X. Liang and J. Deng. 2019. Detection of stationary human target via contactless radar networks. J. Ambient Intell. Hum. Comput. 10, 8 (2019), 3193--3200.Google ScholarGoogle ScholarCross RefCross Ref
  73. R. Zhou, X. Lu, P. Zhao, and J. Chen. 2017. Device-free presence detection and localization with SVM and CSI fingerprinting. IEEE Sens. J. 17, 23 (2017), 7990--7999.Google ScholarGoogle ScholarCross RefCross Ref
  74. C. Han, Q. Tan, L. Sun, H. Zhu, and J. Guo. 2018. CSI frequency domain fingerprint-based passive indoor human detection. Information 9, 4 (2018), 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  75. S.-H. Fang, C.-C. Li, W.-C. Lu, Z. Xu, and Y.-R. Chien. 2019. Enhanced device-free human detection: Efficient learning from phase and amplitude of channel state information. IEEE Trans. Vehic. Technol. 68, 3 (2019), 3048--3051.Google ScholarGoogle ScholarCross RefCross Ref
  76. S. D. Domenico, M. D. Sanctis, E. Cianca, and M. Ruggieri. 2018. Wi-fi-based through-the-wall presence detection of stationary and moving humans analyzing the doppler spectrum. IEEE Aerospace Electr. Syst. Mag. 33, 5-6 (2018), 14--19.Google ScholarGoogle Scholar
  77. F. Adib, Z. Kabelac, and D. Katabi. 2015. Multi-person localization via RF body reflections. In Proceedings of the 12th USENIX Conference on Networked Systems Design and Implementation. 279--292.Google ScholarGoogle Scholar
  78. T. Li, Y. Wang, L. Song, and H. Tan. 2015. On Target Counting by Sequential Snapshots of Binary Proximity Sensors. In Proceedings of the 12th European Conference on Wireless Sensor Networks (EWSN’15). 19--34.Google ScholarGoogle Scholar
  79. L. Song and Y. Wang. 2014. Multiple target counting and tracking using binary proximity sensors: Bounds, coloring, and filter. In Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing. 397--406.Google ScholarGoogle Scholar
  80. Y. Wang, L. Song, Z. Gu, and D. Li. 2016. IntenCT: Efficient multi-target counting and tracking by binary proximity sensors. In Proceedings of the 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON’16).Google ScholarGoogle Scholar
  81. F. Wahl, M. Milenkovic, and O. Amft. 2012. A distributed PIR-based approach for estimating people count in office environments. In Proceedings of the 2012 IEEE 15th International Conference on Computational Science and Engineering. 640--647.Google ScholarGoogle Scholar
  82. F. Wahl, M. Milenkovic, and O. Amft. 2012. A green autonomous self-sustaining sensor node for counting people in office environments. In Proceedings of the 5th European DSP Education and Research Conference (EDERC’12). 203--207.Google ScholarGoogle Scholar
  83. D. Zhang and L. M. Ni. 2009. Dynamic clustering for tracking multiple transceiver-free objects. In Proceedings of the 2009 IEEE International Conference on Pervasive Computing and Communications. 1--8.Google ScholarGoogle Scholar
  84. I. Sabek, M. Youssef, and A. V. Vasilakos. 2015. ACE: An accurate and efficient multi-entity device-free WLAN localization system. IEEE Trans. Mobile Comput. 14, 2 (2015), 261--273.Google ScholarGoogle ScholarCross RefCross Ref
  85. Q. Wang, H. Yigitler, R. Jantti, and X. Huang. 2016. Localizing multiple objects using radio tomographic imaging technology. IEEE Trans. Vehic. Technol. 65, 5 (2016), 3641--3656.Google ScholarGoogle ScholarCross RefCross Ref
  86. S. Nannuru, Y. Li, Y. Zeng, M. Coates, and B. Yang. 2013. Radio-frequency tomography for passive indoor multitarget tracking. IEEE Trans. Mobile Comput. 12, 12 (2013), 2322--2333.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. N. Zamzami, M. Amayri, N. Bouguila, and S. Ploix. 2019. Online Clustering for Estimating Occupancy in an Office Setting. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE’19). 2195--2200.Google ScholarGoogle Scholar
  88. Y. P. Raykov, E. Ozer, G. Dasika, A. Boukouvalas, and M. A. Little. 2016. Predicting room occupancy with a single passive infrared (PIR) sensor through behavior extraction. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’16). 1016--1027.Google ScholarGoogle Scholar
  89. D. Wu, D. Chen, K. Xing, and X. Cheng. 2012. A statistical approach for target counting in sensor-based surveillance systems. In Proceedings of the IEEE International Confernece on Computer Communcations (INFOCOM’12) 226--234.Google ScholarGoogle Scholar
  90. S. Depatla, A. Muralidharan, and Y. Mostofi. 2015. Occupancy estimation using only wi-fi power measurements. IEEE J. Select. Areas Commun. 33, 7 (2015), 1381--1393.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. S. D. Domenico, M. D. Sanctis, E. Cianca, and G. Bianchi. 2016. A trained-once crowd counting method using differential wi-fi channel state information. In Proceedings of the 3rd International Workshop on Physical Analytics. 37--42.Google ScholarGoogle Scholar
  92. W. Xi, J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang. 2014. Electronic frog eye: Counting crowd using wi-fi. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’14). 361--369.Google ScholarGoogle Scholar
  93. B. Zhang, X. Cheng, N. Zhang, Y. Cui, Y. Li, and Q. Liang. 2011. Sparse target counting and localization in sensor networks based on compressive sensing. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’11). 2255--2263.Google ScholarGoogle Scholar
  94. J. Wang, D. Fang, Z. Yang, H. Jiang, X. Chen, T. Xing, and L. Cai. 2017. E-HIPA: An energy-efficient framework for high-precision multi-target-adaptive device-free localization. IEEE Trans. Mobile Comput. 16, 3 (2017), 716--729.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. B. Sun, Y. Guo, N. Li, and D. Fang. 2017. Multiple target counting and localization using variational bayesian EM algorithm in wireless sensor networks. IEEE Trans. Commun. 65, 7 (2017), 2985--2998.Google ScholarGoogle ScholarCross RefCross Ref
  96. Y. Guo, B. Sun, N. Li, and D. Fang. 2018. Variational bayesian inference-based counting and localization for off-grid targets with faulty prior information in wireless sensor networks. IEEE Trans Communications. 66, 3 (2018), 1273--1283.Google ScholarGoogle ScholarCross RefCross Ref
  97. Y. Zeng, P. H. Pathak, and P. Mohapatra. 2016. WiWho: Wi-fi-based person identification in smart spaces. In Proceedings of the 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN’16). 1--12.Google ScholarGoogle Scholar
  98. J. Zhang, B. Wei, W. Hu, and S. S. Kanhere. 2016. Wi-Fi-ID: Human identification using wi-fi signal. In Proceedings of the 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS’16). 75--82.Google ScholarGoogle Scholar
  99. F. Hong, X. Wang, Y. Yang, Y. Zong, Y. Zhang, and Z. Guo. 2016. WFID: Passive device-free human identification using wi-fi signal. In Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MOBIQUITOUS’16). 47--56.Google ScholarGoogle Scholar
  100. J. Lv, W. Yang, D. Man, X. Du, M. Yu, and M. Guizani. 2017. Wii: Device-free passive identity identification via wi-fi signals. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’17).Google ScholarGoogle Scholar
  101. J. Lv, W. Yang, and D. Man. 2017. Device-free passive identity identification via wi-fi signals. Sensors (Basel) 17, 11 (2017).Google ScholarGoogle Scholar
  102. J. Yun and S. S. Lee. 2014. Human movement detection and identification using pyroelectric infrared sensors. Sensors (Basel) 14, 5 (2014), 8057--81.Google ScholarGoogle ScholarCross RefCross Ref
  103. J. Xiong, F. Li, N. Zhao, and N. Jiang. 2014. Tracking and recognition of multiple human targets moving in a wireless pyroelectric infrared sensor network. Sensors (Basel) 14, 4 (2014), 7209--28.Google ScholarGoogle ScholarCross RefCross Ref
  104. J. Xiong, F. Li, and J. Liu. 2016. Fusion of different height pyroelectric infrared sensors for person identification. IEEE Sens. J. 16, 2 (2016), 436--446.Google ScholarGoogle ScholarCross RefCross Ref
  105. J. Yan, P. Lou, R. Li, J. Hu, and J. Xiong. 2018. Research on the multiple factors influencing human identification based on pyroelectric infrared sensors. Sensors (Basel) 18, 2 (2018).Google ScholarGoogle Scholar
  106. C.-Y. Hsu, R. Hristov, G.-H. Lee, M. Zhao, and D. Katabi. 2019. Enabling identification and behavioral sensing in homes using radio reflections. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1--13.Google ScholarGoogle Scholar
  107. P. Zhao, C. X. Lu, J. Wang, C. Chen, W. Wang, N. Trigoni, and A. Markham. 2019. mID: Tracking and identifying people with millimeter wave radar. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS’19). 33--40.Google ScholarGoogle Scholar
  108. K. Hyun Hee, H. Kyoung Nam, L. Suk, and L. Kyung Chang. 2009. Resident location-recognition algorithm using a bayesian classifier in the PIR sensor-based indoor location-aware system. IEEE Trans. Syst. Man. Cybernet. C 39, 2 (2009), 240--245.Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. D. Zhang, J. Zhou, M. Guo, J. Cao, and T. Li. 2011. TASA: Tag-free activity sensing using RFID tag arrays. IEEE Trans. Parallel Distrib. Syst. 22, 4 (2011), 558--570.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. T. Hosokawa, M. Kudo, H. Nonaka, and J. Toyama. 2008. Soft authentication using an infrared ceiling sensor network. Pattern Anal. Appl. 12, 3 (2008) 237--249.Google ScholarGoogle ScholarCross RefCross Ref
  111. R. Peng and M. L. Sichitiu. 2006. Angle of arrival localization for wireless sensor networks. In Proceedings of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks. 374--382.Google ScholarGoogle Scholar
  112. D. Niculescu and B. Nath. 2003. Ad hoc positioning system (APS) using AOA. In Proceedings of the IEEE International Conference on Computer Communication (INFOCOM’03). 1734--1743.Google ScholarGoogle Scholar
  113. J. Wang, J. Xiong, H. Jiang, X. Chen, and D. Fang. 2016. D-Watch: Embracing “bad” multipaths for device-free localization with COTS RFID devices. In Proceedings of the 12th International Conference on Emerging Networking Experiments and Technologies. 253--266.Google ScholarGoogle Scholar
  114. X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, and H. Mei. 2016. Dynamic-MUSIC: Accurate device-free indoor localization. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 196--207.Google ScholarGoogle Scholar
  115. D. Lieckfeldt, J. You, and D. Timmermann. 2009. Characterizing the influence of human presence on bistatic passive RFID-system. In Proceedings of the 2009 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications. 338--343.Google ScholarGoogle Scholar
  116. Z. Yang, K. Huang, X. Guo, and G. Wang. 2013. A real-time device-free localization system using correlated RSS measurements. EURASIP J. Wireless Commun. Netw. 1 186 (2013).Google ScholarGoogle Scholar
  117. J. Wang, Q. Gao, Y. Yu, P. Cheng, L. Wu, and H. Wang. 2013. Robust device-free wireless localization based on differential RSS measurements. IEEE Trans. Industr. Electr. 60, 12 5943--5952.Google ScholarGoogle ScholarCross RefCross Ref
  118. Y. Guo, K. Huang, N. Jiang, X. Guo, Y. Li, and G. Wang. 2015. An exponential-rayleigh model for RSS-based device-free localization and tracking. IEEE Trans. Mobile Comput. 14, 3 (2015), 484--494.Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. J. Wang, Q. Gao, M. Pan, X. Zhang, Y. Yu, and H. Wang. 2016. Toward accurate device-free wireless localization with a saddle surface model. IEEE Trans. Vehic. Technol. 65, 8 (2016), 6665--6677.Google ScholarGoogle ScholarCross RefCross Ref
  120. Z. Wang, H. Liu, S. Xu, X. Bu, and J. An. 2015. A diffraction measurement model and particle filter tracking method for RSS-based DFL. IEEE J. Select. Areas Commun. 33, 11 (2015), 2391--2403.Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. C. Liu, D. Fang, Z. Yang, H. Jiang, X. Chen, W. Wang, T. Xing, and L. Cai. 2016. RSS distribution-based passive localization and its application in sensor networks. IEEE Trans. Wireless Commun. 15, 4 (2016), 2883--2895.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. J. Wang, B. Xie, D. Fang, X. Chen, C. Liu, T. Xing, and W. Nie. 2015. Accurate device-free localization with little human cost. In Proceedings of the 1st International Workshop on Experiences with the Design and Implementation of Smart Objects (SmartObjects’15). 55--60.Google ScholarGoogle Scholar
  123. M. Nicoli, V. Rampa, S. Savazzi, and S. Schiaroli. 2016. Device-free localization of multiple targets. In Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO’16). 1--5.Google ScholarGoogle Scholar
  124. B. Wagner, N. Patwari, and D. Timmermann. 2012. Passive RFID tomographic imaging for device-free user localization. In Proceedings of the 9th Workshop on Positioning, Navigation and Communication. 120--125.Google ScholarGoogle Scholar
  125. J. Wilson and N. Patwari. 2011. See-through walls: Motion tracking using variance-based radio tomography networks. IEEE Trans. Mobile Comput. 10, 5 (2011), 612--621.Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. O. Kaltiokallio, M. Bocca, and N. Patwari. 2012. Enhancing the accuracy of radio tomographic imaging using channel diversity. In Proceedings of the 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS’12). 254--262.Google ScholarGoogle Scholar
  127. B. R. Hamilton, X. Ma, R. J. Baxley, and S. M. Matechik. 2014. Propagation modeling for radio frequency tomography in wireless networks. IEEE J. Select. Top. Sign. Process. 8, 1 (2014), 55--65.Google ScholarGoogle ScholarCross RefCross Ref
  128. M. Bocca, O. Kaltiokallio, N. Patwari, and S. Venkatasubramanian. 2014. Multiple target tracking with RF sensor networks. IEEE Trans. Mobile Comput. 13, 8 (2014), 1787--1800.Google ScholarGoogle ScholarCross RefCross Ref
  129. W. Jie, G. Qinghua, C. Peng, Y. Yan, X. Kefei, and W. Hongyu. 2014. Lightweight robust device-free localization in wireless networks. IEEE Trans. Industr. Electr. 61, 10 (2014), 5681--5689.Google ScholarGoogle ScholarCross RefCross Ref
  130. B. Wei, A. Varshney, N. Patwari, W. Hu, T. Voigt, and C. T. Chou. 2015. dRTI. 166--177, 2015.Google ScholarGoogle Scholar
  131. M. A. Kanso and M. G. Rabbat. Compressed RF tomography for wireless sensor networks: Centralized and decentralized approaches. In Proceedings of the 5th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS’09). 173--186.Google ScholarGoogle Scholar
  132. T. Liu, X. Luo, and Z. Liang. 2018. Enhanced sparse representation-based device-free localization with radio tomography networks. J. Sens. Act. Netw. 7, 1 (2018), 7.Google ScholarGoogle ScholarCross RefCross Ref
  133. S. Xu, H. Liu, F. Gao, and Z. Wang. 2019. Compressive sensing based radio tomographic imaging with spatial diversity. Sensors (Basel) 19, 3 (2019).Google ScholarGoogle Scholar
  134. S. Yiu, M. Dashti, H. Claussen, and F. Perez-Cruz. 2017. Wireless RSSI fingerprinting localization. Sign. Process. 131, (2017), 235--244.Google ScholarGoogle Scholar
  135. M. Seifeldin, A. Saeed, A. E. Kosba, A. El-Keyi, and M. Youssef. 2013. Nuzzer: A large-scale device-free passive localization system for wireless environments. IEEE Trans. Mobile Comput. 12, 7 (2013), 1321--1334.Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin. 2012. Improving RF-based device-free passive localization in cluttered indoor environments through probabilistic classification methods. In Proceedings of the 2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN’12). 209--220.Google ScholarGoogle Scholar
  137. J. Wang, X. Zhang, Q. Gao, H. Yue, and H. Wang. 2017. Device-free wireless localization and activity recognition: A deep learning approach. IEEE Trans. Vehic. Technol. 66, 7 (2017), 6258--6267.Google ScholarGoogle ScholarCross RefCross Ref
  138. C. Xu, B. Firner, W. Trappe, R. S. Moore, R. Howard, F. Zhang, Y. Zhang, and N. An. 2013. SCPL: Indoor device-free multi-subject counting and localization using radio signal strength. In Proceedings of the ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN’13). 79--90.Google ScholarGoogle Scholar
  139. J. Wang, X. Zhang, Q. Gao, X. Ma, X. Feng, and H. Wang. 2017. Device-free simultaneous wireless localization and activity recognition with wavelet feature. IEEE Trans. Vehic. Technol. 66, 2 (2017), 1659--1669.Google ScholarGoogle ScholarCross RefCross Ref
  140. J. He, Y. Hu, X. Liu, C. Liu, Y. Peng, and Xianjia Meng. 2017. LiReT: An fine-grained self-adaption device-free localization with little human effort. In Proceedings of the 2017 IEEE International Conference on Smart Computing (SMARTCOMP’17). 1--3.Google ScholarGoogle ScholarCross RefCross Ref
  141. É. L. Souza, E. F. Nakamura, and R. W. Pazzi. 2016. Target tracking for sensor networks. ACM Comput. Surv. 49, 2 (2016), 1--31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. V. Fox, J. Hightower, L. Lin, D. Schulz, and G. Borriello. 2003. Bayesian filtering for location estimation. IEEE Perv. Comput. 2, 3 (2003), 24--33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. X. Luo, B. Shen, X. Guo, G. Luo, and G. Wang. 2009. Human tracking using ceiling pyroelectric infrared sensors. In Proceedings of the 2009 IEEE International Conference on Control and Automation. 1716--1721.Google ScholarGoogle Scholar
  144. B. Yang, X. Li, and J. Luo. 2015. A novel multi-human location method for distributed binary pyroelectric infrared sensor tracking system: Region partition using PNN and bearing-crossing location. Infrared Phys. Technol. 68, (2015), 35--43.Google ScholarGoogle Scholar
  145. B. Yang and M. Zhang. 2017. Credit-based multiple human location for passive binary pyroelectric infrared sensor tracking system: Free from region partition and classifier. IEEE Sens. J. 17, 1 (2017), 37--45.Google ScholarGoogle ScholarCross RefCross Ref
  146. Z. Wang, H. Liu, S. Xu, X. Bu, and J. An. 2017. Bayesian device-free localization and tracking in a binary RF sensor network. Sensors (Basel) 17, 5 (Apr. 2017).Google ScholarGoogle ScholarCross RefCross Ref
  147. J. Wilson and N. Patwari. 2012. A fade-level skew-laplace signal strength model for device-free localization with wireless networks. IEEE Trans. Mobile Comput. 11, 6 (2012), 947--958.Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. J. Wang, Q. Gao, Y. Yu, X. Zhang, and X. Feng. 2016. Time and energy efficient TOF-based device-free wireless localization. IEEE Trans. Industr. Inf. 12, 1 (2016), 158--168.Google ScholarGoogle Scholar
  149. B. Yang, Q. Wei, and M. Zhang. 2017. Multiple human location in a distributed binary pyroelectric infrared sensor network. Infrared Phys. Technol. 85, (2017), 216--224.Google ScholarGoogle Scholar
  150. M. F. Bugallo, T. Lu, and P. M. Djuric. 2007. Target tracking by multiple particle filtering. In Proceedings of the 2007 IEEE Aerospace Conference. 1--7.Google ScholarGoogle Scholar
  151. D. Zhang, K. Lu, R. Mao, Y. Feng, Y. Liu, Z. Ming, and L. M. Ni. 2014. Fine-grained localization for multiple transceiver-free objects by using RF-based technologies. IEEE Trans. Parallel Distrib. Syst. 25, 6 (2014), 1464--1475.Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. S. Tao, M. Kudo, H. Nonaka, and J. Toyama. 2011. Person localization and soft authentication using an infrared ceiling sensor network. In Proceedings of the International Conference on Computer Analysis of Images and Patterns Conference (CAIP’11). 122--129.Google ScholarGoogle Scholar
  153. J. Wang, X. Chen, D. Fang, C. Q. Wu, Z. Yang, and T. Xing. 2015. Transferring compressive-sensing-based device-free localization across target diversity. IEEE Trans. Industr. Electr. 62, 4 (2015), 2397--2409.Google ScholarGoogle ScholarCross RefCross Ref
  154. T. Liu and J. Liu. 2012. Feature-specific biometric sensing using ceiling view based pyroelectric infrared sensors. EURASIP J. Adv. Sign. Process. Article 206 (2012), 11 pages.Google ScholarGoogle Scholar
  155. B. Yang, Y. Lei, and B. Yan. 2016. Distributed multi-human location algorithm using naive bayes classifier for a binary pyroelectric infrared sensor tracking system. IEEE Sens. J. 16, 1 (2016), 216--223.Google ScholarGoogle ScholarCross RefCross Ref
  156. J. Wang, Q. Gao, M. Pan, and Y. Fang. 2018. Device-free wireless sensing: Challenges, opportunities, and applications. IEEE Netw. 32, 2 (2018), 132--137.Google ScholarGoogle ScholarCross RefCross Ref
  157. V. Losing, B. Hammer, and H. Wersing. 2018. Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomputing 275, 1261--1274, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. H. Zou, X. Lu, H. Jiang, and L. Xie. 2015. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine. Sensors (Basel), 15, 1 (2015), 1804--1824.Google ScholarGoogle ScholarCross RefCross Ref
  159. X. Jiang, J. Liu, Y. Chen, D. Liu, Y. Gu, and Z. Chen. 2016. Feature adaptive online sequential extreme learning machine for lifelong indoor localization. Neural Comput. Appl. 27, 1 (2016), 215--225.Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. K. Ohara, T. Maekawa, Y. Kishino, Y. Shirai, and F. Naya. 2015. Transferring positioning model for device-free passive indoor localization. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’15) 885--896.Google ScholarGoogle Scholar
  161. L. Yang, Q. Lin, X. Li, T. Liu, and Y. Liu. 2015. See through walls with COTS RFID system! In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. 487--499.Google ScholarGoogle Scholar
  162. L. Yao, Q. Z. Sheng, X. Li, T. Gu, M. Tan, X. Wang, S. Wang, and W. Ruan. 2018. Compressive representation for device-free activity recognition with passive RFID signal strength. IEEE Trans. Mobile Comput. 17, 2 (2018), 293--306.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Survey on Device-free Indoor Localization and Tracking in the Multi-resident Environment

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 53, Issue 4
        July 2021
        831 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/3410467
        Issue’s Table of Contents

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 July 2020
        • Online AM: 7 May 2020
        • Accepted: 1 April 2020
        • Revised: 1 October 2019
        • Received: 1 May 2019
        Published in csur Volume 53, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • survey
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format