Skip to main content
Log in

Synthesis of polypropylene-graft-norbornene by reactive extrusion and its rheological behavior

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

To overcome the steric effect of norbornene (NB), first-generation Grubbs’ catalyst (GC1) was used as the catalyst to graft NB onto the polypropylene (PP) chain by reactive extrusion. Instead of harsh reaction conditions, such as anhydrous, which was the general method to synthesize NB polymers, this convenient method would be easier to industrialize. The mechanism of grafting was studied by using Fourier Transform InfraRed spectra and differential scanning calorimetry. It was found that GC1 could initiate the ring-opening metathesis polymerization of NB to obtain short NB chain-grafted PP-g-NB. The rheological behavior showed that the grafted NB short chains on PP-g-NB increase the shear thinning of the polymers and decrease the system viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Scheme 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. P.N.S. Poveda, J.A. Molari, D.D. Brunelli, and L.G.A.E. Silva: Study of different process additives applied to polypropylene. In Characterization of Minerals, Metals, and Materials 2018, edited by B. Li, J. Li, S. Ikhmayies, M. Zhang, Y.E. Kalay, J.S. Carpenter, J.-Y. Hwang, S.N. Monteiro, D. Firrao, A. Brown, C. Bai, Z. Peng, J.P. Escobedo-Diaz, R. Goswami and J. Kim (Springer, Cham, 2018) pp. 661–667.

    Chapter  Google Scholar 

  2. C.M. Wu, R.I. Murakami, S.G. Lai, P.C. Lin, and S.P. Rwei: Investigation on the interface modification of pet/pp composites. Mod. Phys. Lett. B 1940019 (2019). doi: 10.1142/S0217984919400190.

    Google Scholar 

  3. W. Zhang, S. Jin, Y. Liang, D. Hu, and Y. Dai: Preparation of polypropylene grafted 4-propoxy-2-hydroxybenzophenone. Gongneng Cailiao/J. Funct. Mater. 49, 11080–11084 (2018).

    Google Scholar 

  4. F. Blank and C. Janiak: Metal catalysts for the vinyl/addition polymerization of norbornene. Coordin. Chem. Rev. 253, 827–861 (2009).

    Article  CAS  Google Scholar 

  5. D. Yang, J. Dong, and B. Wang: Homo- and copolymerization of norbornene with tridentate nickel complexes bearing o-aryloxide-N-heterocyclic carbene ligands. Dalton Trans. 47, 180–189 (2018).

    Article  CAS  Google Scholar 

  6. S.B.T. Nguyen, L.K. Johnson, R.H. Grubbs, and J.W. Ziller: Ring-opening metathesis polymerization (ROMP) of norbornene by a Group VIII carbene complex in protic media. J. Am. Chem. Soc. 114, 3974–3975 (1992).

    Article  CAS  Google Scholar 

  7. H. Fernandes, R.M.S. Filho, L.S.S. José, and B.S. Lima-Neto: Bio-based plant oil polymers from romp of norbornene modified with triglyceride from crude red palm olein. RSC Adv. 6, 75104–75110 (2016).

    Article  CAS  Google Scholar 

  8. E. Ihara, S. Honjyo, T. Itoh, K. Inoue, and M. Nodono: Radical copolymerization of alkyl 2-norbornene-2-carboxylate with alkyl acrylates: facile incorporation of norbornane framework into poly(alkyl acrylate)s. J. Polym. Sci. A: Polym. Chem. 45, 4597–4605 (2007).

    Article  CAS  Google Scholar 

  9. E. Ihara, S. Honjyo, K. Kobayashi, S. Ishii, T. Itoh, and K. Inoue: Radical copolymerization of methyl 2-norbornene-2-carboxylate and 2-phenyl-2-norbornene with styrene, alkyl acrylate, and methyl methacrylate: facile incorporation of norbornane framework into polymer main chain and its effect on glass transition temperature. Polymer 51, 397–402 (2010).

    Article  CAS  Google Scholar 

  10. K. Nomura, M. Tsubota, and M. Fujiki: Efficient ethylene/norbornene copolymerization by (aryloxo) (indenyl) titanium(iv) complexes−MAO catalyst system. Macromolecules 36, 3797–3799 (2003).

    Article  CAS  Google Scholar 

  11. T. Hasan, T. Ikeda, and T. Shiono: Ethene−norbornene copolymer with high norbornene content produced by ansa-fluorenylamidodimethyltitanium complex using a suitable activator. Macromolecules 37, 8503–8509 (2004).

    Article  CAS  Google Scholar 

  12. T. Hasan, T. Ikeda, and T. Shiono: Random copolymerization of propene and norbornene with ansa-fluorenylamidodimethyltitanium-based catalysts. Macromolecules 38, 1071–1074 (2005).

    Article  CAS  Google Scholar 

  13. Z. Cai, Y. Nakayama, and T. Shiono: Living random copolymerization of propylene and norbornene with ansa-fluorenylamidodimethyltitanium complex: synthesis of novel syndiotactic polypropylene-b-poly(propylene-ran-norbornene). Macromolecules 39, 2031–2033 (2006).

    Article  CAS  Google Scholar 

  14. S. Elyashiv-Barad, N. Greinert, and A. Sen: Copolymerization of methyl acrylate with norbornene derivatives by atom transfer radical polymerization. Macromolecules 35, 7521–7526 (2002).

    Article  CAS  Google Scholar 

  15. F. Peruch, H. Cramail, and A. Deffieux: Homopolymerization and copolymerization of styrene and norbornene with Ni-based/MAO catalysts. Macromol. Chem. Phys. 199, 2221–2227 (1998).

    Article  CAS  Google Scholar 

  16. X. Mi, Z. Ma, L. Wang, Y. Ke, and Y. Hu: Homo- and copolymerization of norbornene and styrene with Pd- and Ni-based novel bridged dinuclear diimine complexes and MAO. Macromol. Chem. Phys. 204, 868–876 (2003).

    Article  CAS  Google Scholar 

  17. H. Gao, Y. Chen, F. Zhu, and Q. Wu: Copolymerization of norbornene and styrene catalyzed by a novel anilido–imino nickel complex/methylaluminoxane system. J. Polym. Sci. A: Polym. Chem. 44, 5237–5246 (2006).

    Article  CAS  Google Scholar 

  18. X. Cao, Y. Shi, W. Gan, and H. Gao: Tandem functionalization in one highly branched polymer with layered structure. Chem. A Eur. J. 24, 5974–5981 (2018).

    Article  CAS  Google Scholar 

  19. S.T. Chiu, H.Y. Chiang, Y.J. Lin, Y.Y. Lu, H. Tanaka, T. Hosokai, and M. Horie: Self-assembly and ring-opening metathesis polymerization of cyclic conjugated molecules on highly ordered pyrolytic graphite. Chem. Commun. 54, 5546–5549 (2018).

    Article  CAS  Google Scholar 

  20. X. Wu, Q. Xu, S. Shang, J. Shu, C. Liu, and Z. Zhu: Low-frequency internal friction study on the structural changes in polymer melts. Chin. Phys. Lett. 25, 1388–1391 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, L., Yu, P. et al. Synthesis of polypropylene-graft-norbornene by reactive extrusion and its rheological behavior. MRS Communications 10, 487–491 (2020). https://doi.org/10.1557/mrc.2020.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.51

Navigation