Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T09:34:31.781Z Has data issue: false hasContentIssue false

Deformed wing virus type a and b in managed honeybee colonies of Argentina

Published online by Cambridge University Press:  29 June 2020

C. Brasesco*
Affiliation:
Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
S. Quintana
Affiliation:
Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina Laboratorio de Biología Molecular, Instituto de Análisis Fares Taie, Mar del Plata, Argentina
V. Di Gerónimo
Affiliation:
Laboratorio de Biología Molecular, Instituto de Análisis Fares Taie, Mar del Plata, Argentina
M. L. Genchi García
Affiliation:
Laboratorio de Virología (LAVIR). Facultad de Ciencias Veterinarias. Universidad Nacional de La Plata, La Plata, Argentina Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Buenos Aires, Argentina
G. Sguazza
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
M. E. Bravi
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina Laboratorio de Virología (LAVIR). Facultad de Ciencias Veterinarias. Universidad Nacional de La Plata, La Plata, Argentina
L. Fargnoli
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral, Santa Fe, Argentina
F. J. Reynaldi
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina Laboratorio de Virología (LAVIR). Facultad de Ciencias Veterinarias. Universidad Nacional de La Plata, La Plata, Argentina
M. Eguaras
Affiliation:
Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
M. Maggi
Affiliation:
Centro de Investigación en Abejas Sociales, Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina
*
Author for correspondence: Constanza Brasesco, Email: cobrasesco@gmail.com

Abstract

Apis mellifera is infected by more than 24 virus species worldwide, mainly positive-sense, single-stranded RNA viruses of the Dicistroviridae and Iflaviridae families. Among the viruses that infect honey bees, Deformed wing virus is the most prevalent and is present as three master variants DWV-A, B, and C. Given that the ectoparasitic mite Varroa destructor vectors these virus variants, recombination events between them are expected, and variants and their recombinants can co-exist in mites and honeybees at the same time. In this study, we detect, through RT-qPCR, the presence of DWV-A and B in the same samples of adult bees from colonies of Argentina. Total RNA was extracted from pools of ten adult bees from 45 apiaries distributed across the main beekeeping Provinces of Argentina (Buenos Aires, Santa Fe, Córdoba, Santiago del Estero, Río Negro, and Mendoza); then RT-qPCR reactions were performed to detect DWV-A and B, with specific primer pairs. After the amplifications, PCR products (204 and 660 bp amplicons for DWV-B, and ~250 bp for DWV-A) were purified and sequenced to verify that they corresponded to reported sequences, analyzing them using the Blast software. Of the 45 samples analyzed by RT-qPCR, over 90% were infected with DWV-A and 47% were also positive for DWV-B, where it was found in high prevalence specifically in colonies of A. mellifera of the Buenos Aires Province. Future studies will determine the impact of this type of the virus and its ability to recombine with the other DWV types in the apiaries of our country.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, SF, Gish, W, Miller, W, Myers, EW and Lipman, DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Antúnez, K, D'Alessandro, B, Corbella, E, Ramallo, G and Zunino, P (2006) Honeybee viruses in Uruguay. Journal of Invertebrate Pathology 93, 6770.CrossRefGoogle ScholarPubMed
Benaets, K, Van Geystelen, A, Cardoen, D, De Smet, L, de Graaf, DC, Schoofs, L, Larmuseau, MH, Brettell, LE, Martin, SJ and Wenseleers, T (2017) Covert Deformed Wing Virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences 284, 20162149.CrossRefGoogle ScholarPubMed
Brasesco, C, Quintana, S, Negri, P, Medici, S, Ruffinengo, S, Eguaras, M and Maggi, M (2013) Detección mediante PCR en Tiempo Real de virus patógenos de Apis mellifera en el sudeste de la provincia de Buenos Aires. BER: VIII Encuentro Anual Biólogos en Red. ISSN: 1853-3426.Google Scholar
Brettell, LE, Mordecai, GJ, Schroeder, DC, Jones, IM, da Silva, JR, Vicente-Rubiano, M and Martin, SJ (2017) A comparison of Deformed Wing Virus in deformed and asymptomatic honey bees. Insects 8, 28.CrossRefGoogle ScholarPubMed
Dalmon, A, Desbiez, C, Coulon, M, Thomasson, M, Le Conte, Y, Alaux, C, Vallon, J and Moury, B (2017) Evidence for positive selection and recombination hotspots in Deformed Wing Virus (DWV). Scientific Reports 7, 41045.CrossRefGoogle Scholar
de Miranda, JR and Genersch, E (2010) Deformed wing virus. Journal of Invertebrate Pathology 103, S48S61.10.1016/j.jip.2009.06.012CrossRefGoogle ScholarPubMed
de Miranda, JR, Bailey, L, Ball, BV, Blanchard, P, Budge, GE, Chejanovsky, N, Chen, YP, Gauthier, L, Genersch, E, de Graaf, D, Ribière, M, Ryabov, E, De Smet, L and van der Steen, J (2013) Standard methods for virus research in Apis mellifera. Journal of Apicultural Research 52, 156.CrossRefGoogle Scholar
Desai, SD, Eu, YJ, Whyard, S and Currie, RW (2012) Reduction in Deformed Wing Virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Molecular Biology 21, 446455.CrossRefGoogle ScholarPubMed
Desbiez, C, Joannon, B, Wipf-Scheibel, C, Chandeysson, C and Lecoq, H (2011) Recombination in natural populations of watermelon mosaic virus: new agronomic threat or damp squib? Journal of General Virology 92, 19391948.CrossRefGoogle ScholarPubMed
Ellis, JD and Munn, PA (2005) The worldwide health status of honey bees. Bee World 86, 88101.CrossRefGoogle Scholar
Garcia-Arenal, F, Fraile, A and Malpica, JM (2003) Variation and evolution of plant virus populations. International Microbiology 6, 225232.CrossRefGoogle ScholarPubMed
Gauthier, L, Tentcheva, D, Tournaire, M, Dainat, B, Cousserans, F, Colin, ME and Bergoin, M (2007) Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique. Apidologie 38, 426435.CrossRefGoogle Scholar
Genersch, E and Aubert, M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Veterinary Research 41, 54.CrossRefGoogle Scholar
Kevill, JL, Highfield, A, Mordecai, GJ, Martin, SJ and Schroeder, DC (2017) ABC Assay: method development and application to quantify the role of three DWV master variants in overwinter colony losses of European honey bees. Viruses 9, 314.CrossRefGoogle ScholarPubMed
Kukielka, D, Esperón, F, Higes, M and Sánchez-Vizcaíno, JM (2018) A sensitive one-step real-time RT-PCR method for detection of Deformed wing virus and Black queen cell virus in honeybee Apis mellifera. Journal of Virological Methods 147, 275281.CrossRefGoogle Scholar
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 15471549.CrossRefGoogle ScholarPubMed
Lanzi, G, De Miranda, JR, Boniotti, MB, Cameron, CE, Lavazza, A, Capucci, L, Camazine, SM and Rossi, C (2006) Molecular and biological characterization of Deformed Wing Virus of honeybees (Apis mellifera L.). Journal of Virology 80, 49985009.CrossRefGoogle Scholar
Lefeuvre, P, Lett, JM, Varsani, A and Martin, DP (2009) Widely conserved recombination patterns among single-stranded DNA viruses. Journal of Virology 83, 26972707.CrossRefGoogle ScholarPubMed
Maggi, M, Ruffinengo, S, Negri, P, Brasesco, C, Medici, SK, Quintana, S and Eguaras, M (2013) The status of see health and colony losses in Argentina. In Molley, C (ed.), Biology and Ecology of Bee Parasites Honeybees: Foraging Behavior, Reproductive Biology and Diseases. Nova Publishing Group, pp. 212234. ISBN (September): 978–1.Google Scholar
Maggi, M, Antúnez, K, Invernizzi, C, Aldea, P, Vargas, M, Negri, P, Brasesco, C, De Jong, D, Message, D, Weinstein Teixeira, E, Principal, J, Barrios, C, Ruffinengo, S, Rodríguez Da Silva, R and Eguaras, M (2016) Honeybee health in South America. Apidologie 47, 835854.CrossRefGoogle Scholar
Martin, S, Highfield, A, Brettell, L, Villalobos, E, Budge, G, Powell, M, Nikaido, S and Schroeder, D (2012) Global honey bee viral landscape altered by a parasitic mite. Science (New York, N.Y.) 336, 1304.CrossRefGoogle ScholarPubMed
McMenamin, AJ and Flenniken, ML (2018) Recently identified bee viruses and their impact on bee pollinators. Current Opinion in Insect Science 26, 120129.CrossRefGoogle ScholarPubMed
Moore, J, Jironkin, A, Chandler, D, Burroughs, N, Evans, DJ and Ryabov, EV (2011) Recombinants between Deformed Wing Virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. Journal of General Virology 92(Pt 1), 156161.CrossRefGoogle ScholarPubMed
Mordecai, GJ, Wilfert, L, Martin, SJ, Jones, IM and Schroeder, DC (2016) Diversity in a honey bee pathogen: first report of a third master variant of the Deformed Wing Virus quasispecies. The ISME Journal 10, 12641273.CrossRefGoogle Scholar
Negri, P, Maggi, MD, Ramirez, L, De Feudis, L, Szwarski, N, Quintana, S, Eguaras, M and Lamattina, L (2015) Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie 46, 542557.CrossRefGoogle Scholar
Ongus, JR, Peters, D, Bonmatin, JM, Bengsch, E, Vlak, JM and van Oers, MM (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. Journal of General Virology 85(Pt 12), 37473755.CrossRefGoogle ScholarPubMed
Potts, SG, Roberts, SP, Dean, R, Marris, G, Brown, MA, Jones, R, Neumann, P and Settele, J (2010) Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research 49, 1522.CrossRefGoogle Scholar
Quintana, S, Brasesco, C, Negri, P, Marin, M, Pagnuco, I, Szawarski, N, Reynaldi, F, Larsen, A, Eguaras, M and Maggi, M (2019) Up-regulated pathways in response to Deformed Wing Virus infection in Apis mellifera (Hymenoptera: Apidae). Revista de la Sociedad Entomológica Argentina 78, 111.CrossRefGoogle Scholar
Reynaldi, FJ, Sguazza, GH, Pecoraro, MR, Tizzano, MA and Galosi, CM (2010) First report of viral infections that affect Argentinean honey bee. Environmental Microbiology Reports 2, 749751.CrossRefGoogle Scholar
Reynaldi, FJ, Sguazza, GH, Tizzano, MA, Fuentealba, NA, Galosi, CM and Pecoraro, MR (2011) First report of Israeli Acute Paralysis Virus in asymptomatic hives of Argentina. Revista Argentina de Microbiología 43, 8486.Google ScholarPubMed
Ryabov, EV, Wood, GR, Fannon, JM, Moore, JD, Bull, JC, Chandler, D, Mead, A, Burroughs, N and Evans, DJ (2014) A virulent strain of Deformed Wing Virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathogens 10, e1004230.CrossRefGoogle ScholarPubMed
Ryabov, EV, Childers, AK, Chen, Y, Madella, S, Nessa, A and Evans, JD (2017) Recent spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. Scientific Reports 7, 17447.CrossRefGoogle ScholarPubMed
Ryabov, EV, Childers, AK, Lopez, D, Grubbs, K, Posada-Florez, F, Weaver, D, Girten, W, van Engelsdorp, D, Chen, Y and Evans, JD (2019) Dynamic evolution in the key honey bee pathogen Deformed Wing Virus: novel insights into virulence and competition using reverse genetics. PLoS Biology 17, e3000502.CrossRefGoogle ScholarPubMed
Sguazza, GH, Reynaldi, FJ, Galosi, CM and Pecoraro, MR (2013) Simultaneous detection of bee viruses by multiplex PCR. Journal of Virological Methods 194, 102106.CrossRefGoogle ScholarPubMed
van Engelsdorp, D, Evans, JD, Saegerman, C, Mullin, C, Haubruge, E, Nguyen, BK, Frazier, M, Frazier, J, Cox-Foster, D, Chen, YP, Underwood, R, Tarpy, DR and Pettis, JS (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4, e6481e6481.CrossRefGoogle Scholar
Wilfert, L, Long, G, Leggett, HC, Schmid-Hempel, P, Butlin, R, Martin, SJM and Boots, M (2016) Deformed Wing Virus is a recent global epidemic in honeybees driven by Varroa mites. Science (New York, N.Y.) 351, 594597.CrossRefGoogle ScholarPubMed
Yang, X and Cox-Foster, DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences 102, 74707475.CrossRefGoogle ScholarPubMed
Yue, C and Genersch, E (2005) RT-PCR analysis of Deformed Wing Virus in honeybees (Apis mellifera) and mites (Varroa destructor). Journal of General Virology 86(Pt 12), 34193424.CrossRefGoogle Scholar
Zioni, N, Soroker, V and Chejanovsky, N (2011) Replication of Varroa destructor Virus 1 (VDV-1) and a Varroa destructor Virus 1–Deformed Wing Virus recombinant (VDV-1–DWV) in the head of the honey bee. Virology 417, 106112.CrossRefGoogle Scholar
Supplementary material: File

Brasesco et al. supplementary material

Table S1

Download Brasesco et al. supplementary material(File)
File 13.3 KB
Supplementary material: File

Brasesco et al. supplementary material

Figure S1

Download Brasesco et al. supplementary material(File)
File 299.1 KB
Supplementary material: File

Brasesco et al. supplementary material

Figure S2

Download Brasesco et al. supplementary material(File)
File 65.2 KB