Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

DRY & WET: meniscus splitting from a mixture of polysaccharides and water

Abstract

Drying-induced patterns, “meniscus splitting”, are introduced through a series of experiments using self-assembled polysaccharides. When physicochemical factors such as the geometry of the evaporative air–liquid interface are controlled, the depositing polymer bridges the gap between two substrates to create multiple nuclei at specific positions for membrane growth. These phenomena were first discovered by our group based on viscous fingering, known as tears of wine. By developing interfacial instability, meniscus splitting causes partitioning of a space by membranes, similar to dissipative structures seen in nature, “from one space into multiple spaces.” In the field of advanced biomimetic materials, the method of convective meniscus splitting would be useful for devising a powerful strategy for the preparation of hierarchically self-assembled materials from a variety of polymeric materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Henisch HK. Crystals in gels and Liesegang rings. Cambridge University Press; New York 1988.

  2. Turing AM. The chemical basis of morphogenesis. Philos Trans R Soc B. 1952;237:37–72.

    Google Scholar 

  3. Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science. 2010;329:1616–20.

    CAS  PubMed  Google Scholar 

  4. Cazabat AM, Heslot F, Trolan SM, Carles P. Fingering instability of thin spreading films driven by temperature gradients. Nature. 1990;346:824–6.

    CAS  Google Scholar 

  5. Brzoska JB, Brochard-Wyard F, Rondelez F. Exponential growth of fingering instabilities of spreading films under horizontal thermal gradients. Europhys Lett. 1992;19:97–102.

    CAS  Google Scholar 

  6. Lajeunesse E, Martin J, Rakotomalala N, Salin D. 3D Instability of miscible displacements in a Hele–Shaw cell. Phys Rev Lett. 1997;79:5254–7.

    CAS  Google Scholar 

  7. Lindner A, Coussot P, Bonn D. Viscous fingering in a yield stress fluid. Phys Rev Lett. 2000;85:314–7.

    CAS  PubMed  Google Scholar 

  8. Maillard M, Motte L, Pileni MP. Ring and hexagons made of nanocrystals. Adv Mater. 2001;13:200–4.

    CAS  Google Scholar 

  9. de Gennes PG, Brochard-Wyart F, Quéré D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer; New York 2003.

  10. Rabbani HS, Or D, Liu CY, Lai C, Lu NB, Datta SS, et al. Suppressing viscous fingering in structured porous media. Proc Natl Acad Sci USA. 2018;115:4833–8.

  11. Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature. 1992;355:242–4.

    CAS  Google Scholar 

  12. Osada Y, Gong JP. Soft and wet materials: polymer gels. Adv Mater. 1998;10:827–37.

    CAS  Google Scholar 

  13. Weissman JM, Sunkara HB, Tse AS, Asher AS. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science. 1996;274:959–60.

    CAS  PubMed  Google Scholar 

  14. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Self-oscillating gel. J Am Chem Soc. 1996;118:5134–5.

    CAS  Google Scholar 

  15. Kato T. Self-assembly of phase-segregated liquid crystal structures. Science. 2002;295:2414–8.

    CAS  PubMed  Google Scholar 

  16. Yoshida R. Self-oscillating gels driven by the Belousov–Zhabotinsky reaction as novel smart materials. Adv Mater. 2010;22:3463–83.

    CAS  PubMed  Google Scholar 

  17. Okuzaki H, Kuwabara T, Funasaka K, Saido T. Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater. 2013;23:4400.

    CAS  Google Scholar 

  18. Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM. Soft robotics for chemist. Angew Chem Int Ed. 2011;50:1–7.

    Google Scholar 

  19. Yang D, Mosadegh A, Lee B, Khashai F, Suo Z, Bertoldi K, et al. Buckling of elastomeric beams enables actuation of soft machines. Adv Mater. 2015;27:6323–7.

    CAS  PubMed  Google Scholar 

  20. Okeyoshi K, Yoshida R. Hydrogen generating gel systems induced by visible light. Soft Matter. 2009;5:4118–23.

    CAS  Google Scholar 

  21. Okeyoshi K, Yoshida R. Temperature control of photoreaction for hydrogen generating gel systems. Chem Commun. 2009;6400–2.

  22. Okeyoshi K, Yoshida R. Oxygen-generating gel systems induced by visible light. Adv Funct Mater. 2010;20:708–14.

    CAS  Google Scholar 

  23. Okeyoshi K, Yoshida R. Role of copolymerized photosensitizer in hydrogen-generating gel systems for higher quantum efficiency. Chem Commun. 2011;49:4935–7.

    Google Scholar 

  24. Okeyoshi K, Suzuki D, Kishimura A, Yoshida R. Photoinduced hydrogen-generating nanogel systems. Small. 2011;7:311–5.

    CAS  PubMed  Google Scholar 

  25. Okeyoshi K, Yoshida R. Effect of microtubule polymerization on photoinduced hydrogen generation. Chem Commun. 2015;51:11607–10.

    CAS  Google Scholar 

  26. Okeyoshi K, Yoshida R. Polymeric design for electron transfer in photoinduced hydrogen generation through a coil-globule transition. Angew Chem Int Ed. 2019;58:7304–7.

    CAS  Google Scholar 

  27. Okeyoshi K, Kawamura R, Yoshida R, Osada Y. Thermo- and photo-enhanced microtubule formation from Ru(bpy)32+-conjugated tubulin. J Mater Chem B. 2014;2:41–5.

    CAS  PubMed  Google Scholar 

  28. Okeyoshi K, Kawamura R, Yoshida R, Osada Y. Effect of microtubules polymerization on photoinduced hydrogen generation. Chem Commun. 2015;51:11607–10.

    CAS  Google Scholar 

  29. Okeyoshi K, Kawamura R, Yoshida R, Osada Y. Microtubule teardrop patterns. Sci Rep. 2015;5:9581.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitsunaga R, Okeyoshi K, Yoshida R. Design of a comb-type self-oscillating gel. Chem Commun. 2013;49:4935–7.

    CAS  Google Scholar 

  31. Pokroy B, Kang SH, Mahadevan L, Aizenberg J. Self-organization of a mesoscale bristle into ordered hierarchical helical assemblies. Science. 2009;323:237–40.

    CAS  PubMed  Google Scholar 

  32. Noorduin WL, Grinthal A, Mahadevan L, Aizenberg J. Rational designed complex, hierarchical microarchitectures. Science. 2013;340:832–7.

    CAS  PubMed  Google Scholar 

  33. Vogel N, Utech S, England G, Shirman T, Phillips KR, Koay N, et al. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proc Natl Acad Sci USA. 2015;112:10845–50.

  34. Cai Y, Newby BZ. Marangoni flow-induced self-assembly of hexagonal and stripelike nanoparticle patterns. J Am Chem Soc. 2008;130:6076–7.

    CAS  PubMed  Google Scholar 

  35. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–9.

    CAS  Google Scholar 

  36. Saffman PG, Taylor G. The Penetration of a fluid into a medium or Hele-Shaw cell containing a more viscous liquid. Proc Ro Soc Lond A. 1958;245:312–29.

    CAS  Google Scholar 

  37. Okeyoshi K, Okajima MK, Kaneko T. Milliscale self-Integration of megamolecule biopolymers on a drying gas-aqueous liquid crystalline interface. Biomacromolecules. 2016;17:2096–103.

    CAS  PubMed  Google Scholar 

  38. Okeyoshi K, Okajima MK, Kaneko T. Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability. Sci Rep. 2017;7:5615.

    PubMed  PubMed Central  Google Scholar 

  39. Okeyoshi K, Joshi G, Okajima MK, Kaneko T. Formation of polysaccharide membranes by splitting of evaporative air–LC interface. Adv Mater Inter. 2018;5:1701219.

    Google Scholar 

  40. Okeyoshi K, Shinhama T, Budpud K, Joshi G, Okajima MK, Kaneko T. Micelle-mediated self-assembly of microfibers bridging millimeter-scale gap to form three-dimensional-ordered polysaccharide membranes. Langmuir. 2018;34:13965–70.

    CAS  PubMed  Google Scholar 

  41. Okeyoshi K, Yamashita M, Sakaguchi T, Budpud K, Joshi G, Kaneko T. Effect of evaporation rate on meniscus splitting with formation of vertical polysaccharide membranes. Adv Mater Inter. 2019;6:1900855.

  42. Joshi G, Okeyoshi K, Mitsumata T, Kaneko T. Micro-deposition control of polysaccharides on evaporative air-LC interface to design quickly swelling hydrogels. J Colloid Inter Sci. 2019;546:184–91.

    CAS  Google Scholar 

  43. Budpud K, Okeyoshi K, Okajima MK, Kaneko T. Vapor-sensitive materials from polysaccharide fibers with self-assembling twisted microstructures. Small. in press. https://doi.org/10.1002/smll.202001993.

  44. Okeyoshi K. DRY & WET: In vitro dissipative structures of microtubules and polysaccharides by interfacial instability. Kobunshi Ronbunshu. 2018;75:396–405.

    CAS  Google Scholar 

  45. Tanaka T, Sun S, Hirokawa Y, Katayama S, Kucera J, Hirose Y, et al. Mechanical instability of gels at the phase transition. Nature. 1987;325:796–8.

    CAS  Google Scholar 

  46. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature change. Nature. 1995;374:240–2.

    CAS  Google Scholar 

  47. Suzuki A, Yoshikawa S, Bai G. Shrinking pattern and phase transition velocity of poly(N-isopropylacrylamide) gel. J Chem Phys. 1999;111:360–7.

    CAS  Google Scholar 

  48. Holzwarth G, Prestridge EB. Multistranded helix in xanthan polysaccharide. Science. 1977;197:757–9.

    CAS  PubMed  Google Scholar 

  49. Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52:1263–334.

    CAS  Google Scholar 

  50. Akiyoshi K. Handbook of advanced glycoscience and glycoengineering. NTS; Tokyo 2015.

  51. Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec. 2010;10:366–76.

    CAS  PubMed  Google Scholar 

  52. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulise nanofibers. Nanoscale. 2011;3:71–85.

    CAS  PubMed  Google Scholar 

  53. Okajima MK, Kaneko D, Mitsumata T, Kaneko T, Watanabe J. Cyanobacteria that produce megamolecules with efficient self-orientation. Macromolecules. 2009;42:3057–62.

    CAS  Google Scholar 

  54. Mitsumata T, Miura T, Takahashi N, Kawai M, Okajima MK, Kaneko T. Ionic state and chain conformation for aqueous solutions of supergiant cyanobacterial polysaccharide. Phys Rev E. 2013;87:042607.

    Google Scholar 

  55. Shikinaka K, Okeyoshi K, Masunaga H, Okajima MK, Kaneko T. Solution structure of cyanobacterial polysaccharide, sacran. Polymer. 2016;99:767–70.

    CAS  Google Scholar 

  56. Okajima MK, Mishima R, Amornwachirabodee K, Mitsumata T, Okeyoshi K, Kaneko T. Anisotropic swelling in hydrogels formed by cooperatively aligned megamolecules. RSC Adv. 2015;5:86723–9.

    CAS  Google Scholar 

  57. Joshi G, Okeyoshi K, Okajima MK, Kaneko T. Directional control of diffusion swelling in megamolecular polysaccharide hydrogels. Soft Matter. 2016;12:5515–8.

    CAS  PubMed  Google Scholar 

  58. Okeyoshi K, Joshi G, Rawat S, Sornkamnerd S, Amornwachirabodee K, Okajima MK, et al. Drying-induced self-similar assembly of megamolecular polysaccharides through nano and submicron layering. Langmuir. 2017;33:4954–9.

    CAS  PubMed  Google Scholar 

  59. Okeyoshi K, Osada K, Okajima MK, Kaneko T. Methods for self-integration of megamolecular biopolymers on the drying air-LC interface. J Vis Exp. 2017;122:e55274.

  60. Chen H, Meisburger SP, Pabit SA, Sutton JL, Webb WW, Pollack L. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc Natl Acad Sci USA. 2012;109:799–804.

    CAS  PubMed  Google Scholar 

  61. Van den Heuvel MGL, de Graaff MP, Dekker C. Microtubule curvatures under perpendicular electric forces reveal a low persistence length. Proc Natl Acad Sci USA. 2008;105:7941–6.

    PubMed  PubMed Central  Google Scholar 

  62. Marchesault RH, Morehead FF, Walter NM. Liquid crystal systems from fibrillar polysaccharides. Nature. 1959;184:632–3.

    Google Scholar 

  63. Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, et al. Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol. 2013;161:465–76.

    CAS  PubMed  Google Scholar 

  64. Osumi M. The ultrastructure of yeast: cell wall structure and formation. Micron. 1998;29:207–33.

    CAS  PubMed  Google Scholar 

  65. Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci. 2008;53:1–206.

    CAS  Google Scholar 

  66. Chen PY, Lin AYM, Lin YS, Seki Y, Stokes AG, Peyras J, et al. Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater. 2008;1:208–26.

    PubMed  Google Scholar 

  67. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–3500.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is sincerely grateful to Professor Tatsuo Kaneko, Japan Advanced Institute of Science and Technology, and coworkers for their continuous encouragement and tremendous support. This work was supported by a Grant-in-Aid for Young Scientists (JP16K17956) and a Grant-in-Aid for Scientific Research on Innovative Areas (JP20H05213) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; The Kyoto Technoscience Center; The Mitani Foundation for Research and Development; The Asahi Glass Foundation; The Innovation Inspired by Nature Research Support Program; Sekisui Chemical Co. Ltd.; and the Shibuya Science, Culture and Sports Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Okeyoshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okeyoshi, K. DRY & WET: meniscus splitting from a mixture of polysaccharides and water. Polym J 52, 1185–1194 (2020). https://doi.org/10.1038/s41428-020-0369-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0369-y

Search

Quick links