Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 29, 2020

Derivatives of the triaminoguanidinium ion, 7: unsymmetrically substituted N,N',N''-triaminoguanidinium salts via a cyclopentanone spiroaminal intermediate

  • Kerstin Karger , Katharina Bechthold and Gerhard Maas ORCID logo EMAIL logo

Abstract

N,N′,N″-Triaminoguanidinium chloride (TAG-Cl) reacts with cyclopentanone or cyclohexanone to afford 8-(2-cyclopentylidenehydrazinyl)-6,7,9,10-tetraazaspiro[4.5]decan-8-ylium and 3-(2-cyclohexylidenehydrazinyl)-1,2,4,5-tetraazaspiro[5,5]undecan-3-ylium salts, respectively, i. e., two arms of the TAG ion were engaged in spiroaminal formation and the NH2 group of the third arm underwent imine-forming condensation. Ring-opening reactions of the cyclopentanone derived spiroaminal with aldehydes, aryl ketones, aromatic or aliphatic isocyanates give access to a variety of unsymmetrically substituted derivatives of the TAG ion.


Corresponding author: Gerhard Maas, Institute of Organic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany, E-mail:

Acknowledgments

We thank Bernhard Müller (Institute of Inorganic Chemistry II) for the X-ray diffraction data collection and Dr. Markus Wunderlin for the mass spectra.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. For part 6, see: Szabo J., Maas, G. Z. Naturforsch. 2020, 75b, 317–326.Search in Google Scholar

2. Scott, F. L., Cashman, M., Reilly, J. J. Am. Chem. Soc. 1952, 74, 5802.10.1021/ja01142a603Search in Google Scholar

3. Zelenin, K. N., Saminskaya, A. G., Kuznetsova, O. B. Russ. J. Gen. Chem. 1996, 66, 137–142.Search in Google Scholar

4. Müller, I. M., Robson, R. Angew. Chem. Int. Ed. 2000, 39, 4357–4359.10.1002/1521-3773(20001201)39:23<4357::AID-ANIE4357>3.0.CO;2-0Search in Google Scholar

5. Müller, I. M., Möller, D. Eur. J. Inorg. Chem. 2005, 257–263.10.1002/ejic.200400526Search in Google Scholar

6. Szabo, J., Maas, G. Z. Naturforsch. 2016, 71b, 697–703.10.1515/znb-2016-0035Search in Google Scholar

7. Ji, J., Chen, X., Zhang, P. Z., Jiu, A. Q., Zhang, Q. F. Russ. J. Org. Chem. 2019, 55, 1399–1406.10.1134/S1070428019090215Search in Google Scholar

8. Plass, W., El-Tabl, A. S., Pohlmann, A. J. Coord. Chem. 2009, 62, 358–372.10.1080/00958970802279790Search in Google Scholar

9. Szabo, J., Maas, G. Z. Naturforsch. 2013, 68b, 207–213.10.5560/znb.2013-3023Search in Google Scholar

10. Plass, W. Coord. Chem. 2009, 253, 2286–2295.10.1016/j.ccr.2008.12.002Search in Google Scholar

11. Tolshchina, S. G., Ignatenko, N. K., Slepukhin, P. A., Ishmetova, R. I., Rusinov, G. L. Chem. Heterocycl. Comp. 2010, 46, 691–698.10.1007/s10593-010-0571-5Search in Google Scholar

12. Coburn, M. D., Buntain, G. A., Harris, B. W., Hiskey, M. A., Lee, K.-Y., Oh, D. G. J. Heterocycl. Chem. 1991, 28, 2049–2050.10.1002/jhet.5570280844Search in Google Scholar

13. Witek, S., Bielawska, A., Bielawski, J. Heterocycles. 1980, 14, 1313–1317.10.3987/R-1980-09-1313Search in Google Scholar

14. Parrinello, G., Mülhaupt, R. J. Org. Chem. 1990, 55, 1772–1779.10.1021/jo00293a020Search in Google Scholar

15. Göblyös, A., Lázár, L., Fülöp, F. Tetrahedron 2002, 58, 2011–1016.10.1016/S0040-4020(02)00050-9Search in Google Scholar

16. Cordes, J., Murray, P. R. D., White, A. J. P., Barrett, A. G. M. Org. Lett. 2013, 4992–4995.10.1021/ol402301gSearch in Google Scholar PubMed

17. Loerbroks, C., Böker, B., Cordes, J., Barrett, A. G. M., Thiel, W. Eur. J. Org. Chem. 2014, 5476–5486.10.1002/ejoc.201402576Search in Google Scholar

18. Levrand, B., Ruff, Y., Lehn, J.-M., Herrmann, A. Chem. Commun. 2006, 2965–2967.10.1039/B602312FSearch in Google Scholar

19. Godin, G., Levrand, B., Trachsel, A., Lehn, J. M., Herrmann, A. Chem. Commun. 2010, 46, 3125–3127.10.1039/c002302gSearch in Google Scholar PubMed

20. Buchs née Levrand, B., Godin, G., Trachsel, A., de Saint Laumer, J. Y., Lehn, J. M., Herrmann, A. Eur. J. Org. Chem. 2011, 681–695.10.1002/ejoc.201001433Search in Google Scholar

21. Sawatzky, E., Drakopoulos, A., Rölz, M., Sotriffer, C., Engels, B., Decker, M. Beilstein J. Org. Chem. 2016, 12, 2280–2292.10.3762/bjoc.12.221Search in Google Scholar PubMed PubMed Central

22. Hajek, M., Wagner, K., Uerdingen, W., Wellner, W. (Bayer AG), US Patent 4,404,379, 1983.Search in Google Scholar

23. Zengel, H.-G., Wallrabenstein, M., Brodowski, W. (Akzo NV), US Patent 4,289,869, 1981.Search in Google Scholar

24. Ozaki, S. Chem. Rev. 1972, 72, 457–496.10.1021/cr60279a002Search in Google Scholar

25. Weiss, S., Krommer, H. (SKW Trostberg, AG). DE 3341645 (A1), 1985. Chem. Abstr. 1986, 104, 206730.Search in Google Scholar

26. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

27. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

28. Mercury, (version 3.10.1); Cambridge Crystallographic Data Centre: Cambridge (UK), 2001–2018.Search in Google Scholar

Received: 2020-01-13
Accepted: 2020-04-20
Published Online: 2020-06-29
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0004/html
Scroll to top button