Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access June 27, 2020

An overview on the effects of metal promoters and acidity of ZSM-5 in performance of the aromatization of liquid hydrocarbons

  • Khashayar Sharifi , Rouein Halladj EMAIL logo and Seyed Javid Royaee

Abstract

The use of liquid hydrocarbons, such as FCC naphtha, having olefin components makes an adverse impact on our environment. To deal with the problem, one could convert those lethal components, including olefin and paraffin structures, into aromatic compounds under aromatization processes. To this aim, generally zeolite catalysts, especially the ZSM-5 sample, are utilized to facilitate the aromatization processes. According to the general knowledge in this field, such parameters as the metal promoter and the amount of acidity of catalyst affect the performance of zeolite catalysts. In this paper, with the aim of getting acquainted with the conditions to form the desirable products under the best performance of the zeolites, numerous published papers were reviewed.

References

[1] E. A. M. Association. World-wide Fuel Charter. 2006.Search in Google Scholar

[2] L. Velichkina, L. Hydrogen-free domestic technologies for conversion of low-octane gasoline distillates on zeolite catalysts. Theoretical Foundations of Chemical Engineering, Vol. 43, 2009, pp. 486-493.10.1134/S004057950904023XSearch in Google Scholar

[3] Geng, C.-H., F. Zhang, Z.-X. Gao, L.-F. Zhao, and J.-L. Zhou. Hydroisomerization of n-tetradecane over Pt/SAPO-11 catalyst. Catalysis Today, Vol. 93, 2004, pp. 485-491.10.1016/j.cattod.2004.06.104Search in Google Scholar

[4] Miller, S. Studies on wax isomerization for lubes and fuels. Studies in Surface Science and Catalysis, Vol. 84, 1994, pp. 2319-2326.10.1016/S0167-2991(08)63796-9Search in Google Scholar

[5] Corma, A. Transformation of hydrocarbons on zeolite catalysts. Catalysis Letters, Vol. 22, 1993 pp. 33-52.10.1007/BF00811768Search in Google Scholar

[6] Jacobs, P. A., and J. A. Martens. Introduction to acid catalysis with zeolites in hydrocarbon reactions. Studies in Surface Science and Catalysis, Vol. 58, 1991, pp. 445-496.10.1016/S0167-2991(08)63610-1Search in Google Scholar

[7] Aboul-Gheit, A. K., A. E. Awadallah, N. A. Aboul-Gheit, E.-S. A. Solyman, and M. A. Abdel-Aaty. Effect of hydrochlorination and hydrofluorination of Pt/H-ZSM-5 and Pt–Ir/H-ZSM-5 catalysts for n-hexane hydroconversion. Applied Catalysis A: General, Vol. 334, 2008, pp. 304-310.10.1016/j.apcata.2007.10.017Search in Google Scholar

[8] Su, X., G. Wang, X. Bai, W. Wu, L. Xiao, Y. Fang, et al. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chemical Engineering Journal, Vol. 293, 2016, pp. 365-375.10.1016/j.cej.2016.02.088Search in Google Scholar

[9] Baradaran, S., M. Sohrabi, P. Bijani, S. Royaee, and S. Sahebdelfar. An Investigation on Isobutane Aromatization Over an H-ZSM-5 Catalyst. Petroleum Science and Technology, Vol. 32, 2014, pp. 2889-2895.10.1080/10916466.2014.913622Search in Google Scholar

[10] Baradaran, S., M. Sohrabi, P.M. Bijani, and S. J. Royaee. Isobutane aromatization in the presence of propane as a co-reactant over H-ZSM-5 catalysts using different crystallization times. Journal of Industrial and Engineering Chemistry,Vol. 27, 2015, pp. 354-361.10.1016/j.jiec.2015.01.014Search in Google Scholar

[11] Baradaran, S., M. Sohrabi, P. Moghimpour Bijani, S. J. Royaee, and S. Sahebdelfar. Experimental and modelling study of propane aromatization over H-ZSM-5 catalysts prepared by different silica sources. The Canadian Journal of Chemical Engineering, Vol. 93, 2015, pp. 727-735.10.1002/cjce.22160Search in Google Scholar

[12] Li, Y., S. Liu, Z. Zhang, S. Xie, X. Zhu, and L. Xu, Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites: Improved reaction stability. Applied Catalysis A: General, Vol. 338, 2008, pp. 100-113.Search in Google Scholar

[13] Fathi, S., M. Sohrabi, and C. Falamaki, Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions. Fuel, Vol. 116, 2014, pp. 529-537.10.1016/j.fuel.2013.08.036Search in Google Scholar

[14] Louis, B., and L. Kiwi-Minsker. Synthesis of ZSM-5 zeolite in fluoride media: an innovative approach to tailor both crystal size and acidity. Microporous and Mesoporous Materials, Vol. 74, 2004, pp. 171-178.10.1016/j.micromeso.2004.06.016Search in Google Scholar

[15] Jacobs, G., W.E. Alvarez, and D. E. Resasco. Study of preparation parameters of powder and pelletized Pt/KL catalysts for n-hexane aromatization. Applied Catalysis A: General, Vol. 206, 2001, pp. 267-282.10.1016/S0926-860X(00)00606-2Search in Google Scholar

[16] Kumar, N., V. Nieminen, K. Demirkan, T. Salmi, D. Y. Murzin, and E. Laine. Effect of synthesis time and mode of stirring on physico-chemical and catalytic properties of ZSM-5 zeolite catalysts. Applied Catalysis A: General, Vol. 235, 2002, pp. 113-123.10.1016/S0926-860X(02)00258-2Search in Google Scholar

[17] Karimi, R., B. Bayati, N. C. Aghdam, M. Ejtemaee, and A. A. Babaluo. Studies of the effect of synthesis parameters on ZSM-5 nanocrystalline material during template-hydrothermal synthesis in the presence of chelating agent. Powder Technology, Vol. 229, 2012, pp. 229-236.10.1016/j.powtec.2012.06.037Search in Google Scholar

[18] Kuzmina, R., M. Frolov, V. Liventsev, T. Vetrova, and A. Kovnev. Development of zeolite-containing reforming catalysts. Catalysis in Industry, Vol. 2, 2010, pp. 329-333.10.1134/S2070050410040069Search in Google Scholar

[19] Madon, R. J. Role of ZSM-5 and ultrastable Y zeolites for increasing gasoline octane number. Journal of Catalysis, Vol. 129, 1991, pp. 275-287.10.1016/0021-9517(91)90030-8Search in Google Scholar

[20] Buchanan, J., J. Santiesteban, and W. Haag. Mechanistic considerations in acid-catalyzed cracking of olefins. Journal of Catalysis, Vol. 158, 1996, pp. 279-287.10.1006/jcat.1996.0027Search in Google Scholar

[21] Verdonck, E. Characterization of bitumen by modulated differential scanning calorimetry and high resolution thermogravimetric analysis. TA Instruments-Waters LLC, Brusselsesteenweg 500, 1731 Zellik, Belgium, 2010. Available from: http://www.tainstruments.com/pdf/literature/TA377%20Characterization%20of%20Bitumen%20by%20MDSC%20and%20High%20Resolution%20Thermogravimetry.pdfSearch in Google Scholar

[22] Liu, C., Y. Deng, Y. Pan, Y. Gu, B. Qiao, and X. Gao. Effect of ZSM-5 on the aromatization performance in cracking catalyst. Journal of Molecular Catalysis A: Chemical, Vol. 215, 2004, pp. 195-199.10.1016/j.molcata.2004.02.001Search in Google Scholar

[23] Jacobs, P., E. Flanigen, J. Jansen, and H. van Bekkum. Introduction to zeolite science and practice. Elsevier, 2001.Search in Google Scholar

[24] Weitkamp, J., K. S. W. Sing, and F. Schüth. Handbook of porous solids. Wiley-Vch Weinheim, 2002.Search in Google Scholar

[25] Elanany, M., M. Koyama, M. Kubo, E. Broclawik, and A. Miyamoto. Periodic density functional investigation of Lewis acid sites in zeolites: relative strength order as revealed from NH 3 adsorption. Applied Surface Science, Vol. 246, 2005, pp. 96-101.10.1016/j.apsusc.2004.10.052Search in Google Scholar

[26] Corma, A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, Vol. 216, 2003, pp. 298-312.10.1016/S0021-9517(02)00132-XSearch in Google Scholar

[27] Kresnawahjuesa, O., G. Kühl, R. J. Gorte, and C. Quierini. An examination of Brønsted acid sites in H-[Fe] ZSM-5 for olefin oligomerization and adsorption. Journal of Catalysis, Vol. 210, 2002, pp. 106-115.10.1006/jcat.2002.3657Search in Google Scholar

[28] Arnold, A., M. Hunger, and J. Weitkamp. Dry-gel synthesis of zeolites [Al] EU-1 and [Ga] EU-1. Microporous and Mesoporous Materials, Vol. 67, 2004, pp. 205-213.10.1016/j.micromeso.2003.10.010Search in Google Scholar

[29] Weingarten, R., G. A. Tompsett, W. C. Conner, and G. W. Huber, Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites. Journal of Catalysis, Vol. 279, 2011, pp. 174-182.10.1016/j.jcat.2011.01.013Search in Google Scholar

[30] Wu, W., and E. Weitz. Modification of acid sites in ZSM-5 by ion-exchange: An in-situ FTIR study. Applied Surface Science, Vol. 316, 2014, pp. 405-415.10.1016/j.apsusc.2014.07.194Search in Google Scholar

[31] Velichkina, L., A. N. Pestryakov, A. Vosmerikov, I. Tuzovskaya, N. Bogdanchikova, M. Avalos, et al. Catalytic activity in the hydro-carbon conversion of systems containing platinum, nickel, iron, and zinc nanoparticles (communication 2). Petroleum Chemistry, Vol. 48, 2008, pp. 355-359.10.1134/S0965544108050046Search in Google Scholar

[32] Blomsma, E., J. Martens, and P. Jacobs, Reaction mechanisms of isomerization and cracking of heptane on Pd/H-Beta zeolite. Journal of Catalysis, Vol. 155, 1995, pp. 141-147.10.1006/jcat.1995.1195Search in Google Scholar

[33] Behrsing, T., H. Jaeger, and J. Sanders, Coke deposits on H-ZSM-5 zeolite. Applied Catalysis. Vol. 54, 1989, pp. 289-302.10.1016/S0166-9834(00)82371-4Search in Google Scholar

[34] Su, L., L. Liu, J. Zhuang, H. Wang, Y. Li, W. Shen, et al. Creating mesopores in ZSM-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catalysis Letters, Vol. 91, 2003, pp. 155-167.10.1023/B:CATL.0000007149.48132.5aSearch in Google Scholar

[35] Tempelman, C. H., V. O. de Rodrigues, E. R. van Eck, P. C. Magusin, and E. J. Hensen. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization. Microporous and Mesoporous Materials, Vol. 203, 2015, pp. 259-273.10.1016/j.micromeso.2014.10.020Search in Google Scholar

[36] Dergachev, A., and A. Lapidus. Catalytic aromatization of light alkanes. Russian Journal of General Chemistry, Vol. 79, 2009, pp. 1244-1251.10.1134/S1070363209060413Search in Google Scholar

[37] Krishnamurthy, G., A. Bhan, and W. N. Delgass. Identity and chemical function of gallium species inferred from microkinetic modeling studies of propane aromatization over Ga/HZSM-5 catalysts. Journal of Catalysis, Vol. 271, 2010, pp. 370-385.10.1016/j.jcat.2010.02.026Search in Google Scholar

[38] Serykh, A. I., and S. P. Kolesnikov. On the nature of gallium species in gallium-modified mordenite and MFI zeolites. A comparative DRIFT study of carbon monoxide adsorption and hydrogen dissociation. Physical Chemistry Chemical Physics, Vol. 13, 2011, pp. 6892-6900.10.1039/c0cp02088eSearch in Google Scholar

[39] Al-Yassir, N., M. Akhtar, and S. Al-Khattaf. Physicochemical properties and catalytic performance of galloaluminosilicate in aromatization of lower alkanes: a comparative study with Ga/HZSM-5. Journal of Porous Materials, Vol. 19, 2012, pp. 943-960.10.1007/s10934-011-9552-zSearch in Google Scholar

[40] Nowak, I., J. Quartararo, E. G. Derouane, and J. C. Védrine. Effect of H2–O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Applied Catalysis A: General, Vol. 251, 2003, pp. 107-120.10.1016/S0926-860X(03)00299-0Search in Google Scholar

[41] Dooley, K. M., C. Chang, and G. L. Price. Effects of pretreatments on state of gallium and aromatization activity of gallium/ZSM-5 catalysts. Applied Catalysis A: General, Vol. 84, 1992, pp. 17-30.10.1016/0926-860X(92)80336-BSearch in Google Scholar

[42] Meitzner, G., E. Iglesia, J. Baumgartner, and E. Huang. The chemical state of gallium in working alkane dehydrocyclodimerization catalysts. In situ gallium K-edge X-ray absorption spectroscopy. Journal of Catalysis, Vol. 140, 1993, pp. 209-225.10.1006/jcat.1993.1079Search in Google Scholar

[43] Akhtar, M., N. Al-Yassir, S. Al-Khattaf, and J. Čejka. Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite. Catalysis Today, Vol. 179, 2012, pp. 61-72.10.1016/j.cattod.2011.06.036Search in Google Scholar

[44] Miao, Q., M. Dong, X. Niu, H. Wang, W. Fan, J. Wang, et al. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization. Journal of Fuel Chemistry and Technology, Vol. 40, 2012, pp. 1230-1239.Search in Google Scholar

[45] Nash, R. J., M. E. Dry, and C. T. O’Connor. Aromatization of 1-hexene and 1-octene by gallium/H-ZSM-5 catalysts. Applied Catalysis A: General. Vol. 134, 1996, pp. 285-297.10.1016/0926-860X(95)00198-0Search in Google Scholar

[46] Kitagawa, H., Y. Sendoda, and Y. Ono. Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites. Journal of Catalysis, Vol. 101, 1986, pp. 12-18.10.1016/0021-9517(86)90223-XSearch in Google Scholar

[47] Groen, J. C., J.A. Moulijn, and J. Pérez-Ramírez. Desilication: on the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, Vol. 16, 2006, pp. 2121-2131.10.1039/B517510KSearch in Google Scholar

[48] Hartmann, H. Hierarchical zeolites: A proven strategy to combine shape selectivity with eflcient mass transport. Angewandte Chemie International Edition, 43 (2004) 5880-5882.Search in Google Scholar

[49] Koo, J.-B., N. Jiang, S. Saravanamurugan, M. Bejblová, Z. Musilová, J. Čejka, et al. Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. Journal of Catalysis, Vol. 276, 2010, pp. 327-334.10.1016/j.jcat.2010.09.024Search in Google Scholar

[50] Čejka, J., and S. Mintova, Perspectives of micro/mesoporous composites in catalysis. Catalysis Reviews, Vol. 49, 2007, pp. 457-509.10.1080/01614940701583240Search in Google Scholar

[51] Júnior, A.C.F., J.G. Eon, L. Nogueira, R.F. da Silva, and V.d.O. Rodrigues. XAFS study of H-ZSM5 catalysts modified with gallium. Catalysis Today, Vol. 133, 2008, pp. 913-918.10.1016/j.cattod.2007.12.068Search in Google Scholar

[52] Mole, T., J. Anderson, and G. Creer. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts. Applied Catalysis, Vol. 17, 1985, pp. 141-154.10.1016/S0166-9834(00)82709-8Search in Google Scholar

[53] Ono, Y., H. Kitagawa, and Y. Sendoda. Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites. Sekiyu Gakkai Shi, Vol. 30, 1987, pp. 77-88.10.1627/jpi1958.30.77Search in Google Scholar

[54] Kanai, J., and N. Kawata, Aromatization of N-hexane over ZnOHZSM-5 catalysts. Journal of Catalysis, Vol. 114, 1988, pp. 284-290.10.1016/0021-9517(88)90032-2Search in Google Scholar

[55] Ono, Y., H. Adachi, and Y. Senoda. Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 84, No. 4, 1988, pp. 1091-1099.10.1039/f19888401091Search in Google Scholar

[56] Viswanadham, N., G. Muralidhar, and T. P. Rao. Cracking and aromatization properties of some metal modified ZSM-5 catalysts for light alkane conversions. Journal of Molecular Catalysis A: Chemical, Vol. 223, 2004, pp. 269-274.10.1016/j.molcata.2003.11.045Search in Google Scholar

[57] Jana, A. K., and M. S. Rao. Selective aromatization of C3 and C4 paraflns over modified Encilite catalysts. 1. Qualitative study. Industrial & Engineering Chemistry Research, Vol. 32, 1993, pp. 1046-1052.10.1021/ie00018a009Search in Google Scholar

[58] Shibata, M., H. Kitagawa, Y. Sendoda, and Y. Ono. Transformation of propene into aromatic hydrocarbons over ZSM-5 zeolites. Studies in Surface Science and Catalysis, Vol. 28, 1986, pp. 717-724.10.1016/S0167-2991(09)60939-3Search in Google Scholar

[59] Viswanadham, N., A. Pradhan, N. Ray, S. Vishnoi, U. Shanker, and T. P. Rao. Reaction pathways for the aromatization of paraflns in the presence of H-ZSM-5 and Zn/H-ZSM-5, Applied Catalysis A: General. Vol. 137, 1996, pp. 225-233.10.1016/0926-860X(95)00287-1Search in Google Scholar

[60] Long, H., F. Jin, G. Xiong, and X. Wang. Effect of lanthanum and phosphorus on the aromatization activity of Zn/ZSM-5 in FCC gasoline upgrading, Microporous and Mesoporous Materials, Vol. 198, 2014, pp. 29-34.10.1016/j.micromeso.2014.07.016Search in Google Scholar

[61] Tshabalala, T. E., and M. S. Scurrell. Aromatization of n-hexane over Ga, Mo and Zn modified H-ZSM-5 zeolite catalysts. Catalysis Communications, Vol. 72, 2015, pp. 49-52.10.1016/j.catcom.2015.06.022Search in Google Scholar

[62] Ding, W., G.D. Meitzner, and E. Iglesia, The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H–ZSM5. Journal of Catalysis, Vol. 206, 2002, pp. 14-22.10.1006/jcat.2001.3457Search in Google Scholar

[63] Liu, S., L. Wang, Q. Dong, R. Ohnishi, and M. Ichikawa. Catalytic dehydroaromatization of methane with CO/CO2 towards benzene and naphthalene on bimetallic Mo/zeolite catalysts: Bifunctional catalysis and dynamic mechanism. Studies in Surface Science and Catalysis, Vol. 119, 1998, pp. 241-246.10.1016/S0167-2991(98)80438-2Search in Google Scholar

[64] Tan, P., Y. Leung, S. Lai, and C. Au. Methane Aromatization over 2 wt% Mo/HZSM-5 in the Presence of O2 and NO. Catalysis Letters, Vol. 78, 2002, pp. 251-258.10.1023/A:1014956501472Search in Google Scholar

[65] Shu, Y., R. Ohnishi, and M. Ichikawa. Pressurized dehydrocondensation of methane toward benzene and naphthalene on Mo/HZSM-5 catalyst: optimization of reaction parameters and promotion by CO 2 addition. Journal of Catalysis, Vol. 206, 2002, pp. 134-142.10.1006/jcat.2001.3481Search in Google Scholar

[66] Cook, B., D. Mousko, W. Hoelderich, and R. Zennaro. Conversion of methane to aromatics over Mo2C/ZSM-5 catalyst in different reactor types. Applied Catalysis A: General. Vol. 365, 2009, pp. 34-41.10.1016/j.apcata.2009.05.037Search in Google Scholar

[67] Bibby, D. M., R. F. Howe, and G. D. McLellan. Coke formation in high-silica zeolites. Applied Catalysis A: General, Vol. 93, 1992, pp. 1-34.10.1016/0926-860X(92)80291-JSearch in Google Scholar

[68] Chen, D., S. Sharma, I. Filimonov, and J. Dumesic. Microcalori-metric studies of zeolite acidity. Catalysis Letters. Vol. 12, 1992, pp. 201-211.10.1007/BF00767202Search in Google Scholar

[69] Parrillo, D., R. Gorte, and W. Farneth. A calorimetric study of simple bases in H-ZSM-5: a comparison with gas-phase and solution-phase acidities. Journal of the American Chemical Society, Vol. 115, 1993, pp. 12441-12445.10.1021/ja00079a027Search in Google Scholar

[70] McLellan, G., R. Howe, L. Parker, and D. Bibby. Effects of coke formation on the acidity of ZSM-5. Journal of Catalysis, Vol. 99, 1986, pp. 486-491.10.1016/0021-9517(86)90373-8Search in Google Scholar

[71] Bibby, D., G. McLellan, and R. Howe. Effects of coke formation and removal on the acidity of ZSM-5. Studies in Surface Science and Catalysis, Vol. 34, 1987, pp. 651-658.10.1016/S0167-2991(09)60399-2Search in Google Scholar

[72] Kissin, Y. Degenerate non-primary products in catalytic cracking of isoalkanes. Journal of Catalysis, Vol. 146, 1994, pp. 358-369.10.1006/jcat.1994.1074Search in Google Scholar

[73] El-Malki, E.-M., R. Van Santen, and W. Sachtler. Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: Identification of acid sites. The Journal of Physical Chemistry B, Vol. 103, 1999, pp. 4611-4622.10.1021/jp990116lSearch in Google Scholar

[74] Coelho, A., L. Costa, M. Marques, I. Fonseca, M. Lemos, and F. Lemos. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Applied Catalysis A: General, Vol. 413, 2012, pp. 183-191.10.1016/j.apcata.2011.11.010Search in Google Scholar

[75] Song, Y., X. Zhu, S. Xie, Q. Wang, and L. Xu. The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts, Catalysis Letters, Vol. 97, 2004, pp. 31-36.10.1023/B:CATL.0000034281.58853.76Search in Google Scholar

[76] Long, H., X. Wang, and W. Sun. Study of n-octene aromatization over nanoscale HZSM-5 zeolite. Microporous and Mesoporous Materials, Vol. 119, 2009, pp. 18-22.10.1016/j.micromeso.2008.09.032Search in Google Scholar

[77] Guisnet, M., N. Gnep, and F. Alario, Aromatization of short chain alkanes on zeolite catalysts. Applied Catalysis A: General, Vol. 89, 1992, pp. 1-30.10.1016/0926-860X(92)80075-NSearch in Google Scholar

[78] Giannetto, G., R. Monque, and R. Galiasso. Transformation of LPG into aromatic hydrocarbons and hydrogen over zeolite catalysts. Catalysis Reviews—Science and Engineering, Vol. 36, 1994, pp. 271-304.10.1080/01614949408013926Search in Google Scholar

[79] Li, B., S. Li, N. Li, H. Chen, W. Zhang, X. Bao, et al. Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization. Microporous and Mesoporous Materials, Vol. 88, 2006, pp. 244-253.10.1016/j.micromeso.2005.09.016Search in Google Scholar

[80] Li, Y., S. Liu, S. Xie, and L. Xu. Promoted metal utilization capacity of alkali-treated zeolite: Preparation of Zn/ZSM-5 and its application in 1-hexene aromatization. Applied Catalysis A: General, Vol. 360, 2009, pp. 8-16.Search in Google Scholar

[81] Tempelman, C. H., X. Zhu, and E. J. Hensen. Activation of Mo/HZSM-5 for methane aromatization. Chinese Journal of Catalysis, Vol. 36, 2015, pp. 829-837.10.1016/S1872-2067(14)60301-6Search in Google Scholar

[82] Fan, Y., X. Bao, G. Shi, W. Wei, and J. Xu. Olefin reduction of FCC gasoline via hydroisomerization aromatization over modified HMOR/HZSM-5/Hβ composite carriers. Applied Catalysis A: General, Vol. 275, 2004, pp. 61-71.10.1016/j.apcata.2004.07.046Search in Google Scholar

[83] Zhang, K., Y.-Q. Liu, W.-C. Chen, C.-G. Liu. Silicon modification of the catalyst for FCC gasoline aromatization, Journal of Fuel Chemistry and Technology, Vol. 38, 2010, pp. 571-575.10.1016/S1872-5813(10)60046-1Search in Google Scholar

[84] Liu, H., S. Yang, S. Wu, F. Shang, X. Yu, C. Xu, et al. Synthesis of Mo/TNU-9 (TNU-9 Taejon National University No. 9) catalyst and its catalytic performance in methane non-oxidative aromatization. Energy, Vol. 36, 2011, pp. 1582-1589.10.1016/j.energy.2010.12.073Search in Google Scholar

[85] Shu, Y., R. Ohnishi, and M. Ichikawa. Stable and selective dehydrocondensation of methane towards benzene on modified Mo/HMCM-22 catalyst by the dealumination treatment. Catalysis Letters, Vol. 81, 2002, pp. 9-17.Search in Google Scholar

[86] Pinglian, T., X. Zhusheng, Z. Tao, C. Liayuan, and L. Liwu. Aromatization of methane over different Mo-supported catalysts in the absence of oxygen. Reaction Kinetics and Catalysis Letters, Vol. 61, 1997, pp. 391-396.10.1007/BF02478398Search in Google Scholar

[87] Kojima, R., S. Kikuchi, H. Ma, J. Bai, M. Ichikawa. Promotion effects of Pt and Rh on catalytic performances of Mo/HZSM-5 and Mo/HMCM-22 in selective methane-to-benzene reaction. Catalysis Letters, Vol. 110, 2006, pp. 15-21.10.1007/s10562-006-0087-xSearch in Google Scholar

[88] Wang, L., Y. Xu, S.-T. Wong, W. Cui, and X. Guo. Activity and stability enhancement of MoHZSM-5-based catalysts for methane non-oxidative transformation to aromatics and C 2 hydrocarbons: effect of additives and pretreatment conditions. Applied Catalysis A: General, Vol. 152, 1997, pp. 173-182.Search in Google Scholar

[89] Liu, S., Q. Dong, R. Ohnishi, and M. Ichikawa. Remarkable nonoxidative conversion of methane to naphthalene andbenzene on Co and Fe modified Mo/HZSM-5 catalysts. Chemical Communications, No. 15, 1997, pp. 1455-1456.10.1039/a702731aSearch in Google Scholar

[90] Fila, V., M. Bernauer, B. Bernauer, and Z. Sobalik. Effect of addition of a second metal in Mo/ZSM-5 catalyst for methane aromatization reaction under elevated pressures. Catalysis Today, Vol. 256, 2015, pp. 269-275.10.1016/j.cattod.2015.02.035Search in Google Scholar

[91] Nagamori, Y., and M. Kawase. Converting light hydrocarbons containing olefins to aromatics (Alpha Process). Microporous and Mesoporous Materials. Vol. 21, 1998, pp. 439-445.10.1016/S1387-1811(98)00035-3Search in Google Scholar

[92] Sahoo, S., N. Viswanadham, N. Ray, J. Gupta, and I. Singh. Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization. Applied Catalysis A: General, Vol. 205, 2001, pp. 1-10.10.1016/S0926-860X(00)00543-3Search in Google Scholar

[93] De Lucas, A., P. Canizares, A. Durán, and A. Carrero. Dealumination of HZSM-5 zeolites: effect of steaming on acidity and aromatization activity. Applied Catalysis A: General, Vol. 154, 1997, pp. 221-240.Search in Google Scholar

[94] Cañizares, P., and A. Carrero. Dealumination of ferrierite by ammonium hexafluorosilicate treatment: characterization and testing in the skeletal isomerization of n-butene. Applied Catalysis A: General, Vol. 248, 2003, pp. 227-237.Search in Google Scholar

[95] Yan, Z., D. Ma, J. Zhuang, X. Liu, X. Liu, X. Han, et al. On the acid-dealumination of USY zeolite: a solid state NMR investigation, Journal of Molecular Catalysis A: Chemical, Vol. 194, 2003, pp. 153-167.10.1016/S1381-1169(02)00531-9Search in Google Scholar

[96] Song, Y., X. Zhu, Y. Song, Q. Wang, and L. Xu, An effective method to enhance the stability on-stream of butene aromatization: Post-treatment of ZSM-5 by alkali solution of sodium hydroxide. Applied Catalysis A: General, Vol. 302, 2006, pp. 69-77.Search in Google Scholar

[97] Tao, Y., H. Kanoh, L. Abrams, and K. Kaneko. Mesopore-modified zeolites: preparation, characterization, and applications. Chemical Reviews, Vol. 106, 2006, pp. 896-910.10.1021/cr040204oSearch in Google Scholar PubMed

[98] Fang, Y., X. Su, X. Bai, W. Wu, G. Wang, L. Xiao, et al. Aromatization over nanosized Ga-containing ZSM-5 zeolites prepared by different methods: Effect of acidity of active Ga species on the catalytic performance, Journal of Energy Chemistry, Vol. 26, No. 4, 2017, pp. 768-775.10.1016/j.jechem.2017.03.014Search in Google Scholar

Received: 2018-02-07
Accepted: 2018-10-04
Published Online: 2020-06-27

© 2020 Khashayar Sharifi et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/rams-2020-0037/html
Scroll to top button