Skip to main content
Log in

Scaling behavior in measured keystroke time series from patients with Parkinson’s disease

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Parkinson has remained as one of the most difficult diseases to diagnose, as there are no biomarkers to be measured, and this requires one patient to do neurological and physical examinations. As Parkinson is a progressive disease, accurate detection of its symptoms is a crucial factor for therapeutic reasons. In this study, we perform Multifractal Detrended Fluctuation Analysis (MFDFA) on measured keystroke time series for three different categories of subjects: healthy, early-PD, and De-Novo patients. We have observed different scaling behavior in terms of multifractality of the measured time series, which can be used as a practical tool for diagnosis purposes. Additionally, the source of the multifractality has been studied which shows that in healthy and early-PD subjects, multifractality due to the long-range correlations is stronger than the influence of its probability distribution function (PDF) fatness, while in De-Novo patients, both shape of PDF and long-range correlations are contributing to observed multifractality.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.W. Kantelhardt,Mathematics of Complexity and Dynamical Systems, edited by R.A. Meyers (Springer, New York, 2012), pp. 463–487

  2. U. Frisch,Turbulence, The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, England, 1995)

  3. M.R. Rahimi Tabar,Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes (Springer, Switzerland, 2019)

  4. R. Friedrich, J. Peinke, M. Sahimi, M.R. Rahimi Tabar, Phys. Rep. 506, 87 (2011)

    ADS  MathSciNet  Google Scholar 

  5. J. Peinke, M.R. Rahimi Tabar, M. Wächter, Ann. Rev. Condens. Matter Phys. 10, 110 (2019)

    ADS  Google Scholar 

  6. C. Peng, S. Buldyrev, M. Simons, H. Stanley, A. Goldberger, Phys. Rev. E 49, 1685 (1994)

    ADS  Google Scholar 

  7. Z. Jiang, W. Xie , W. Zhou, D. Sornette, Rep. Prog. Phys. 82, 12 (2019)

    Google Scholar 

  8. P. Baranowski, J. Krzyszczak, C. Slawinski, H. Hoffmann, J. Kozyra, A. Nierobca, K. Siwek, A. Gluza, Clim. Res. 65, 39 (2015)

    Google Scholar 

  9. M. Laib, J. Golay, L. Telesca, M. Kanevski, Chaos Solitons Fractals 109, 118 (2018)

    ADS  Google Scholar 

  10. R. Morales, T.D. Matteo, R. Gramatica, T. Aste, Physica A 391, 3180 (2012)

    ADS  Google Scholar 

  11. J. Barunik, T. Aste, T.D. Matteo, R. Liu, Physica A 391, 4234 (2012)

    ADS  Google Scholar 

  12. R. Morales, T.D. Matteo, T. Aste, Physica A 392, 6470 (2013)

    ADS  Google Scholar 

  13. A.Y. Schumann, J.W. Kantelhardt, Physica A 390, 14 (2011)

    Google Scholar 

  14. J. Ludescher, M.I. Bogachev, J.W. Kantelhardt, A.Y. Schumann, A. Bunde, Physica A 390, 2480 (2011).

    ADS  Google Scholar 

  15. X. Zhang, H. Liu, Y. Zhao, X. Zhang, Physica A 531, 121790 (2019)

    Google Scholar 

  16. J. Wang, P. Shang, X. Cui, Phys. Rev. E 89, 032916 (2014)

    ADS  Google Scholar 

  17. S. Blesic, S. Milosevic, D. Stratimirovic, M. Ljubisavljevic, Physica A 268, 275 (1999)

    ADS  Google Scholar 

  18. S. Bahar, J.W. Kantelhardt, A. Neiman, H.H.A. Rego, D.F. Russell, L. Wilkens, A. Bunde, F. Moss, Europhys. Lett. 56, 454 (2001)

    ADS  Google Scholar 

  19. S. Shadkhoo, F. Ghanbarnejad, G.R. Jafari, M.R. Rahimi Tabar, Cent. Eur. J. Phys. 7, 620 (2009)

    Google Scholar 

  20. M.S. Movahed, F. Ghasemi, S. Rahvar, M.R. Rahimi Tabar, Phys. Rev. E 84, 021103 (2011)

    ADS  Google Scholar 

  21. R. Lopes, N. Betrouni, Med. Image Anal. 13, 634 (2009)

    Google Scholar 

  22. M R. Rahimi Tabar et al., Comput. Sci. Eng. 8, 54 (2006)

    Google Scholar 

  23. L.F. Marton , S.T. Brassai, L. Bako, L. Losonczi, Procedia Technol. 12, 125 (2014)

    Google Scholar 

  24. Y. Wu, S. Krishnan, Engineering 18, 150 (2010)

    Google Scholar 

  25. M.R. Rahimi Tabar, M. Anvari, G. Lohmann, D. Heinemann, M. Wächter, P. Milan, E. Lorenz, J. Peinke, Eur. Phys. J. Special Topics 223, 2637 (2014)

    ADS  Google Scholar 

  26. A. Madanchi, M. Absalan, G. Lohmann, M. Anvari, M.R. Rahimi Tabar, Solar Energy 144, 1 (2017)

    ADS  Google Scholar 

  27. M.S. Movahed, G.R. Jafari, F. Ghasemi, S. Rahvar, M.R. Rahimi Tabar, J. Stat. Mech. 02, P02003 (2006)

    Google Scholar 

  28. Z. Fayyaz, M. Bahdorian, J. Doostmohammadi, V. Davoodnia, S. Khodadadian, R. Lashgari, J. Neurosci. Methods 312, 84 (2019)

    Google Scholar 

  29. P. Shang, Y. Lu, S. Kamae, Chaos Solitons Fractals 36, 82 (2008)

    ADS  Google Scholar 

  30. A. Facchini, S. Wimberger, A. Tomadin, Physica A 376, 266 (2007)

    ADS  Google Scholar 

  31. A.K. Maity, R. Pratihar, A. Mitra, S. Dey, V. Agrawal, S. Sanyal, A. Banerjee, R. Sengupta, D. Ghosh, Chaos Solitons Fractals 81, 52 (2015)

    ADS  MathSciNet  Google Scholar 

  32. L. Telesca, M. Lovallo, M. Kanevski, Appl. Energy 162 1052 (2016)

    Google Scholar 

  33. J.F. Muzy, E. Bacry, A. Arneodo, Int. J. Bifurc. Chaos 4, 245 (1994)

    Google Scholar 

  34. A. Arneodo, E. Bacry, P.V. Graves, J.F. Muzy, Phys. Rev. Lett. 74, 3293 (1995)

    ADS  Google Scholar 

  35. P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, H.E. Stanley, Nature 399, 461 (1999)

    ADS  Google Scholar 

  36. L.A.N. Amaral, P. Ch. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A.L. Goldberger, H.E. Stanley, Y. Yamamoto, Phys. Rev. Lett. 86, 6026 (2001)

    ADS  Google Scholar 

  37. A. Silchenko, C.K. Hu, Phys. Rev. E 63, 041105 (2001)

    ADS  Google Scholar 

  38. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002)

    ADS  Google Scholar 

  39. A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark, J. Mietus, G. Moody, C.K. Peng, H.E. Stanley, Circulation 101, 215 (2000)

    Google Scholar 

  40. E.A.F. Ihlen, Front. Physiol. 3, 141 (2012)

    ADS  Google Scholar 

  41. L. Giancardo, A. Sánchez-Ferro, T. Arroyo-Gallego, I. Butterworth, C.S. Mendoza, P. Montero, M. Matarazzo, J.A. Obeso, M.L. Gray, R.S.J. Estépar, Sci. Rep. 6, 34468 (2016)

    ADS  Google Scholar 

  42. B. Lan, J.H.W. Yeo, PLoS One 14, 6 (2019)

    Google Scholar 

  43. W.R. Adams, PLoS One 12, e0188226 (2017)

    Google Scholar 

  44. J. Feder,Fractals (Plenum Press, New York, 1988)

  45. H.O. Peitgen, H. Jurgens, D. Saupe,Chaos and Fractals (Springer-Verlag, New York, 1992)

  46. S.M. Ossadnik, S.B. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, C.K. Peng, M. Simons, H.E. Stanley, Biophys. J. 67, 64 (1994)

    ADS  Google Scholar 

  47. J.W. Kantelhardt, Fractal and multifractal time series, inMathematics of Complexity and Dynamical Systems, edited by R.A. Meyers (Springer, New York, 2011), pp. 463–487

  48. A. Eke, P. Herman, L. Kocsis, L.R. Kozak, Physiol. Meas. 23, R1-38 (2002)

    Google Scholar 

  49. M.S. Taqqu, V. Teverovsky, W. Willinger, Fractals 3, 785 (1995)

    Google Scholar 

  50. K. Hu, P. Ch. Ivanov, Z. Chen, P. Carpena, H.E. Stanley, Phys. Rev. E 64, 011114 (2001)

    ADS  Google Scholar 

  51. Z. Chen, P. Ch. Ivanov, K. Hu, H.E. Stanley, Phys. Rev. E 65, 041107 (2002)

    ADS  Google Scholar 

  52. A. Bunde, S. Havlin, J.W. Kantelhardt, T. Penzel, J.H. Peter, K. Voigt, Phys. Rev. Lett. 85, 3736 (2000)

    ADS  Google Scholar 

  53. P. Manshour, M.R. Rahimi Tabar, J. Peinke, J. Stat. Mech. 8, P08031 (2015)

    Google Scholar 

  54. T. Schreiber, A. Schmitz, Phys. Rev. Lett. 77, 635 (1996)

    ADS  Google Scholar 

  55. M.I. Bogachev, J.F. Eichner, A. Bunde, Phys. Rev. Lett. 99, 240601 (2007)

    ADS  Google Scholar 

  56. S. Dutta, D. Ghosh, S. Chatterjee, Front. Physiol. 4, 274 (2013)

    Google Scholar 

  57. N. Scafetta, R. Moon, B.J. West, Complexity 12, 12 (2007)

    ADS  MathSciNet  Google Scholar 

  58. D. Ghosh, S. Samanta, S. Chakraborty,Multifractals and Chronic Diseases of the Central Nervous System (Springer, Berlin, 2019), pp. 117–147

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Reza Rahimi Tabar.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madanchi, A., Taghavi-Shahri, F., Taghavi-Shahri, S.M. et al. Scaling behavior in measured keystroke time series from patients with Parkinson’s disease. Eur. Phys. J. B 93, 126 (2020). https://doi.org/10.1140/epjb/e2020-100561-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100561-4

Keywords

Navigation