Skip to main content
Log in

A Case Study on Assessing Cumulonimbus Induced Flight Vulnerabilities Over the Nepalese Himalayan Terrain

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

With a boom in the tourist industry both in India and adjoining Nepal, middle-class tourists from the Indian subcontinent have started routinely flying over the Himalayan terrain over the last decade. This influx of tourists stretches its aviation sector, in a country with some of the most vulnerable airports. The Himalayan terrain plays a key role in shaping weather systems over the region which has witnessed several aircraft crashes. Tourists in Nepal routinely fly 19-seater aircrafts such as the Beechcraft 1900D for a joy ride over the Himalayan range and are particularly vulnerable. This paper assesses the risks and vulnerabilities associated with such short duration flights starting from Kathmandu and covering parts of the Himalayan region. The region experiences deep cumulonimbus clouds which form over a period of a few days and are ubiquitous during the monsoon season (June to September). The vertical extent of such clouds ranges from 2 km upwards to up to the tropopause. This paper first assesses cumulonimbus mediated hazards along flight routes with thunderstorm activity and then details a critique on the hazard tied down to secondary effects i.e. deposition of supercooled droplets on a Beechcraft 1900D. In particular, the paper explores the role of cumulonimbus induced icing on the aircraft surfaces which can severely affect tourist flights over this part of the developing world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Arkin, P. A., Joyce, R., & Janowiak, J. E. (1994). The estimation of global monthly mean rainfall using infrared satellite data: The GOES precipitation index (GPI). Remote Sensing Reviews, 11(1–4), 107–124.

    Google Scholar 

  • Ba, M. B., & Gruber, A. (2001). GOES multispectral rainfall algorithm (GMSRA). Journal of Applied Meteorology, 40(8), 1500–1514.

    Google Scholar 

  • Bastola, D. P. (2017). Analysis of the aviation industry as a growth sector of economy: A Study Of Nepali Aviation Industries. International Journal of Advanced Research and Publications, 1(2), 70–75.

    Google Scholar 

  • BBC (2019). Nepal plane crash: Three die at world’s ‘most dangerous’ airport. BBC News. https://www.bbc.com/news/world-asia-47926714. Accessed 17 Apr 2019.

  • Bhat, G. S., & Kumar, S. (2015). Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. Journal of Geophysical Research (Atmospheres), 120, 1710–1722.

    Google Scholar 

  • Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2009JF001426.

    Article  Google Scholar 

  • Bragg, M., Hutchison, T., & Merret, J. (2000). Effect of ice accretion on aircraft flight dynamics. In 38th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.2000-360.

  • Buddha Airlines (2020). Buddha Airlines flight schedule. https://www.buddhaair.com/search/flight?sector=KTM-MTN. Accessed 20 June 2020.

  • Cao, Y., Tan, W., & Wu, Z. (2018). Aircraft icing: An ongoing threat to aviation safety. Aerospace Science and Technology, 75, 353–385.

    Google Scholar 

  • CD-adapco (2018) STAR-CCM + 11.0 User Guide. CD-adapco, Inc.

  • Chan, P. W., & Hon, K. K. (2016). Observation and numerical simulation of terrain-induced windshear at the Hong Kong International Airport in a Planetary Boundary Layer without Temperature Inversions. Advances in Meteorology. https://doi.org/10.1155/2016/1454513.

    Article  Google Scholar 

  • Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569–585.

    Google Scholar 

  • Cole, J., & Sand, W. (1991). Statistical study of aircraft icing accidents. In 29th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1991-558.

  • Conrick, R., & Mass, C. F. (2019). An evaluation of simulated precipitation characteristics during OLYMPEX. Journal of Hydrometeorology, 20(6), 1147–1164.

    Google Scholar 

  • Cooper, W. A., Sand, W. R., Politovich, M. K., & Veal, D. L. (1984). Effects of icing on performance of a research airplane. Journal of Aircraft, 21(9), 708–715.

    Google Scholar 

  • Cotton, W. R., Bryan, G., & van den Heever, S. C. (2011). Chapter 8—cumulonimbus clouds and severe convective storms. In W. Cotton, G. Bryan, & S. van den Heever (Eds.), International geophysics, vol. 99 (pp. 315–454). Cambridge: Academic Press.

    Google Scholar 

  • Cracknell, A. P., & Varotsos, C. A. (2007). Editorial and cover: Fifty years after the first artificial satellite: from Sputnik 1 to ENVISAT. International Journal of Remote Sensing, 28(10), 2071–2072.

    Google Scholar 

  • DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., et al. (2010). Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences, 107(25), 11217–11222.

    Google Scholar 

  • Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20), 3077–3107.

    Google Scholar 

  • FAA (Federal Aviation Administration) (2013). AC 00-24C—Thunderstorms. United States Department of Transportation. https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentid/1020774. Accessed 19 June 2020.

  • Feist, M. M., Westbrook, C. D., Clark, P. A., Stein, T. H. M., Lean, H. W., & Stirling, A. J. (2019). Statistics of convective cloud turbulence from a comprehensive turbulence retrieval method for radar observations. Quarterly Journal of the Royal Meteorological Society, 145(719), 727–744.

    Google Scholar 

  • Fowler, A. M., & Hennessy, K. J. (1995). Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Natural Hazards, 11(3), 283–303.

    Google Scholar 

  • Gao, W., Sui, C.-H., Fan, J., Hu, Z., & Zhong, L. (2016). A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations. Journal of Geophysical Research: Atmospheres, 121, 13735–13752.

    Google Scholar 

  • Ghazi, M., & Juhany, K. (1996). Investigation of various airplanes under downburst. In 21st Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1996-3415.

  • Ghosh, S., Gumber, S., & Varotsos, C. (2018). A sensitivity study of diffusional mass transfer of gases in tropical storm hydrometeors. Theoretical and Applied Climatology, 134(3), 1083–1100.

    Google Scholar 

  • Ghosh, S., & Jonas, P. R. (1998). On the application of the classic Kessler and Berry schemes in Large Eddy Simulation models with a particular emphasis on cloud autoconversion, the onset time of precipitation and droplet evaporation. Annales Geophysicae, 16(5), 628–637.

    Google Scholar 

  • Global Modeling and Assimilation Office (GMAO) (2008). instM_2d_int_Nx: MERRA 2D IAU Diagnostic, Vertical Integrals and Budget Terms, Monthly Mean V5.2.0, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/QL0PGBK2CYJS. Accessed 19 June 2020.

  • Grell, G. A., & Freitas, S. R. (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14(10), 5233–5250.

    Google Scholar 

  • Gumber, S., Ghosh, S., Orr, A., Kumar, C. R. S., & Pope, J. (2020). On the microphysical processing of aged combustion aerosols impacting warm rain microphysics over Asian megacities. Theoretical and Applied Climatology, 139(3), 1479–1491.

    Google Scholar 

  • Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9), 2318–2341.

    Google Scholar 

  • Hylton, W. S. (2011). What Happened to Air France Flight 447? The New York Times. https://www.nytimes.com/2011/05/08/magazine/mag-08Plane-t.html. Accessed 19 June 2020.

  • Iacono, M. J., Mlawer, E. J., Clough, S. A., & Morcrette, J.-J. (2000). Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. Journal of Geophysical Research: Atmospheres, 105(D11), 14873–14890.

    Google Scholar 

  • JAXA (2018). ALOS Global Digital Surface Model ‘ALOS World 3D-30 m’ (AW3D30). Japan Aerospace Exploration Agency, Earth Observation Research Center. https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm. Accessed 19 June 2020.

  • Jeck, R. K. (2001). A History and Interpretation of Aircraft Icing Intensity Definitions and FAA Rules for Operating in Icing Conditions, Office of Aviation and Research, Washington, D.C. http://www.tc.faa.gov/its/worldpac/techrpt/ar01-91.pdf. Accessed 19 June 2020.

  • Jiménez, P. A., & Dudhia, J. (2013). On the Ability of the WRF model to reproduce the surface wind direction over complex terrain. Journal of Applied Meteorology and Climatology, 52(7), 1610–1617.

    Google Scholar 

  • Kintea, D., Schremb, M., Roisman, I., & Tropea, C. (2014). Numerical Computation of Ice Crystal Accretion on Warm Aircraft Components at High Altitudes. In 26th Annual Conference on Liquid Atomization and Spray Systems (ILASS) 2014, Bremen, Germany. https://ilasseurope.org/events/26th-ilass-europe-2014/. Accessed 19 June 2020.

  • Koop, T. (2000). The formation of ice clouds from supercooled aqueous aerosols. AIP Conference Proceedings, 534(1), 549–560.

    Google Scholar 

  • Kumar, V. V., Jakob, C., Protat, A., May, P. T., & Davies, L. (2013). The four cumulus cloud modes and their progression during rainfall events: A C-band polarimetric radar perspective. Journal of Geophysical Research: Atmospheres, 118(15), 8375–8389.

    Google Scholar 

  • Lee, H., & Baik, J.-J. (2017). A Physically Based Autoconversion Parameterization. Journal of the Atmospheric Sciences, 74(5), 1599–1616.

    Google Scholar 

  • LeMone, M. A., & Zipser, E. J. (1980). Cumulonimbus Vertical Velocity Events in GATE. Part I: Diameter, Intensity and Mass Flux. Journal of the Atmospheric Sciences, 37(11), 2444–2457.

    Google Scholar 

  • Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., et al. (2019). East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC). Journal of Geophysical Research: Atmospheres, 124(23), 13026–13054.

    Google Scholar 

  • Lim, W.-X., & Zhong, Z.-W. (2018). Re-planning of flight routes avoiding convective weather and the “Three Areas”. IEEE Transactions on Intelligent Transportation Systems, 19(3), 868–877.

    Google Scholar 

  • Manohar, G. K., Kandalgaonkar, S. S., & Tinmaker, M. I. R. (1999). Thunderstorm activity over India and the Indian southwest monsoon. Journal of Geophysical Research: Atmospheres, 104(D4), 4169–4188.

    Google Scholar 

  • Matsuda, K., & Onishi, R. (2019). Turbulent enhancement of radar reflectivity factor for polydisperse cloud droplets. Atmospheric Chemistry and Physics, 19(3), 1785–1799.

    Google Scholar 

  • Mayhew, B., Brown, L., & Stiles, P. (2018). Nepal travel guide (11th ed.). Melbourne: Lonely Planet Publications.

    Google Scholar 

  • Medina, S., Houze, R. A., Kumar, A., & Niyogi, D. (2010). Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quarterly Journal of the Royal Meteorological Society, 136(648), 593–616.

    Google Scholar 

  • Mikkelsen, K., Mcknight, R., Ranaudo, R., & Perkins, Jr., P. (1985). Icing flight research—aerodynamic effects of ice and ice shape documentation with stereo photography. In 23rd Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1985-468.

  • Mingione, G., & Barocco, M. (2010). Flight in icing conditions. French Directorate General for Civil Aviation. https://www.ecologique-solidaire.gouv.fr/sites/default/files/4_DGAC_Icing_flight_manual.pdf. Accessed 19 June 2020.

  • Moisseev, D. N., Lautaportti, S., Tyynela, J., & Lim, S. (2015). Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. Journal of Geophysical Research: Atmospheres, 120(24), 12644–12655.

    Google Scholar 

  • MOSDAC (2018). 3RIMG_L2G_GPI. SAC-ISRO INDIA, https://doi.org/10.19038/SAC/10/3RIMG_L2G_GPI. Accessed 20 June 2020.

  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. (2015). Updated daily. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D65Q4T4Z. Accessed 19 June 2020.

  • nepalflightticketbooking.com (2019). Nepal domestic flights. http://www.nepalflightticketbooking.com/domestic-flights.html. Accessed 20 June 2020.

  • Orr, A., Listowski, C., Couttet, M., Collier, E., Immerzeel, W., Deb, P., et al. (2017). Sensitivity of simulated summer monsoonal precipitation in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF. Journal of Geophysical Research: Atmospheres, 122(12), 6298–6318.

    Google Scholar 

  • Palazzi, E., von Hardenberg, J., & Provenzale, A. (2013). Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. Journal of Geophysical Research: Atmospheres, 118(1), 85–100.

    Google Scholar 

  • Phillips, V. T. J., DeMott, P. J., & Andronache, C. (2008). An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. Journal of the Atmospheric Sciences, 65(9), 2757–2783.

    Google Scholar 

  • Posselt, D. J., Li, X., Tushaus, S. A., & Mecikalski, J. R. (2015). Assimilation of dual-polarization radar observations in mixed- and ice-phase regions of convective storms: Information Content And Forward Model Errors. Monthly Weather Review, 143(7), 2611–2636.

    Google Scholar 

  • Pruppacher, H. R., & Klett, J. D. (2010). Microphysics of clouds and precipitation (2nd ed.). Netherlands: Springer.

    Google Scholar 

  • Regmi, R. P. (2014a). Aviation hazards in the sky over Thada as revealed by meso-scale meteorological modeling. Journal of Institute of Science and Technology. https://doi.org/10.3126/jist.v19i2.13854.

    Article  Google Scholar 

  • Regmi, R. P. (2014b). Aviation hazards over the Jomsom Airport of Nepal as revealed by numerical simulation of local flows. Journal of Institute of Science and Technology, 19(1), 111–120.

    Google Scholar 

  • Regmi, R. P., Kitada, T., Dudhia, J., & Maharjan, S. (2017). Large-scale gravity current over the Middle Hills of the Nepal Himalaya: Implications for aircraft accidents. Journal of Applied Meteorology and Climatology, 56(2), 371–390.

    Google Scholar 

  • Romshoo, S. A., Rafiq, M., & Rashid, I. (2018). Spatio-temporal variation of land surface temperature and temperature lapse rate over mountainous Kashmir Himalaya. Journal of Mountain Science, 15(3), 563–576.

    Google Scholar 

  • Sand, W. R., Cooper, W. A., Politovich, M. K., & Veal, D. L. (1984). Icing conditions encountered by a research aircraft. Journal of Climate and Applied Meteorology, 23(10), 1427–1440.

    Google Scholar 

  • Sauvageot, H., & Omar, J. (1987). Radar reflectivity of cumulus clouds. Journal of Atmospheric and Oceanic Technology, 4(2), 264–272.

    Google Scholar 

  • Shrestha, R. K., Connolly, P. J., & Gallagher, M. W. (2017). Sensitivity of WRF cloud microphysics to simulations of a convective storm over the Nepal Himalayas. The Open Atmospheric Science Journal, 11(1), 29–43.

    Google Scholar 

  • Sinclair, V. A., Moisseev, D., & von Lerber, A. (2016). How dual-polarization radar observations can be used to verify model representation of secondary ice. Journal of Geophysical Research: Atmospheres, 121(18), 10954–10970.

    Google Scholar 

  • Skamarock, W. C., & Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7), 3465–3485.

    Google Scholar 

  • Stocker, J., Carruthers, D., Johnson, K., Hunt, J., & Chan, P. W. (2019). Modelling adverse meteorological conditions for aircraft arising from airflow over complex terrain. Meteorological Applications, 26(2), 182–194.

    Google Scholar 

  • Strigaro, D., Cannata, M., & Antonovic, M. (2019). Boosting a weather monitoring system in low income economies using open and non-conventional systems: Data quality analysis. Sensors, 19(5), 1185.

    Google Scholar 

  • TC AIM (2019). Aeronautical information manual. Transport Canada. https://www.tc.gc.ca/eng/civilaviation/publications/tc-aim.html. Accessed 19 June 2020.

  • Thompson, G., & Eidhammer, T. (2014). A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. Journal of the Atmospheric Sciences, 71(10), 3636–3658.

    Google Scholar 

  • Thompson, G., Politovich, M. K., & Rasmussen, R. M. (2017). A Numerical weather model’s ability to predict characteristics of aircraft icing environments. Weather and Forecasting, 32(1), 207–221.

    Google Scholar 

  • Todd, C. J. (1964). Aircraft traverses in a growing mountain cumulus cloud. Journal of the Atmospheric Sciences, 21(5), 529–538.

    Google Scholar 

  • UIUC. (2020). NACA 23018 (naca23018-il). UIUC Airfoil Data Site. https://m-selig.ae.illinois.edu/ads/coord_database.html. Accessed 25 June 2020.

  • Varotsos, C. A., & Zellner, R. (2010). A new modeling tool for the diffusion of gases in ice or amorphous binary mixture in the polar stratosphere and the upper troposphere. Atmospheric Chemistry and Physics, 10(6), 3099–3105.

    Google Scholar 

  • Vogel, G. N. (1988). Icing Considerations for HALE (High Altitude, Long Endurance) Aircraft. Naval Environmental Prediction Research Facility, https://apps.dtic.mil/dtic/tr/fulltext/u2/a202584.pdf Accessed 19 June 2020.

  • Vukits, T. J. (2002). Overview and Risk Assessment of Icing for Transport Category Aircraft and Components. In 40th Aerosp. Sci. Meet. Exhib. https://arc.aiaa.org/doi/10.2514/6.2002-811.

  • Wang, K. (2009). Buddha Air 9N-AGH. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Buddha_Air_9N-AGH.jpg. Protected under Attribution-ShareAlike 2.0 Generic (https://creativecommons.org/licenses/by-sa/2.0/legalcode). Accessed 26 January 2019.

  • Wong, W.-K., Lau, C.-S., & Chan, P.-W. (2013). Aviation model: A fine-scale numerical weather prediction system for aviation applications at the Hong Kong International Airport. Advances in Meteorology. https://doi.org/10.1155/2013/532475.

    Article  Google Scholar 

  • Wu, Z., & Cao, Y. (2016). Numerical simulation of airfoil aerodynamic performance under the coupling effects of heavy rain and ice accretion. Advances in Mechanical Engineering.. https://doi.org/10.1177/1687814016667162.

    Article  Google Scholar 

  • Yadav, Bk. (2017). Aircraft collisions and bird strikes in Nepal between 1946 and 2016: A case study. Journal of Aeronautics & Aerospace Engineering, 6(4), 1–13.

    Google Scholar 

  • Yang, Q., Berg, L. K., Pekour, M., Fast, J. D., Newsom, R. K., Stoelinga, M., et al. (2013). Evaluation of WRF-predicted near-hub-height winds and ramp events over a pacific northwest site with complex terrain. Journal of Applied Meteorology and Climatology, 52(8), 1753–1763.

    Google Scholar 

  • Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W., & Yorty, D. P. (2006). Where are the most intense thunderstorms on earth? Bulletin of the American Meteorological Society, 87(8), 1057–1072.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, A., Ghosh, S., Doshi, N. et al. A Case Study on Assessing Cumulonimbus Induced Flight Vulnerabilities Over the Nepalese Himalayan Terrain. Pure Appl. Geophys. 177, 5041–5066 (2020). https://doi.org/10.1007/s00024-020-02541-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02541-w

Keywords

Navigation