Skip to main content
Log in

Isolation, Identification, and Screening of Lactic Acid Bacteria with Probiotic Potential in Silage of Different Species of Forage Plants, Cocoa Beans, and Artisanal Salami

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The objective of this study was to isolate and characterize lactic acid bacteria with probiotic potential in silages of different species of forage plants, cocoa beans, and artisanal salami. The obtained isolates were submitted to the following evaluations: (i) screening for tolerance to pH 2 and bile salts, (ii) genotypic identification of isolates, (iii) survival in simulated gastric and pancreatic conditions, (iv) antimicrobial activity, (v) antibiotic susceptibility and safety, and (vi) properties associated with adhesion capacity. A total of 82 isolates were obtained and were screened for pH 2.0 tolerance and capacity to growth in the presence of bile salts (1.0 and 2.0%). Only 19 strains simultaneously presented tolerance to pH 2.0 and bile salts. These 19 strains were evaluated for genetic profile by Box-PCR. Subsequently, the selected strains were subjected to partial sequencing of the 16S rRNA gene. The species Lactobacillus plantarum was prevalent. The identified strains were evaluated for survival under simulated gastric and pancreatic conditions. Some strains have shown tolerance in both conditions. Different strains showed variations in antimicrobial activity, susceptibility to antibiotics, and properties associated with adhesion (hydrophobicity, autoaggregation, coaggregation, and adhesion to CaCo2 cells). All strains were negative for hemolysis, DNase, gelatinase, and biogenic amine synthesis activity. The L. plantarum SBR64.7 strain can be considered the most promising for it presented the lowest viability reduction when exposed to gastric and pancreatic juices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Ver Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2017.75

    Article  Google Scholar 

  2. Argyri AA, Zoumpopoulou G, Karatzas KA, Tsakalidou E, Nychas GJ, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33(2):282–291. https://doi.org/10.1016/j.fm.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  3. Floros G, Hatzikamari M, Litopoulou-Tzanetaki E, Tzanetakis N (2012) Probiotic and technological properties of facultatively heterofermentative lactobacilli from Greek traditional cheeses. Food Biotechnol 26(1):85–105. https://doi.org/10.1080/08905436.2011.645941

    Article  CAS  Google Scholar 

  4. Santos TT, Ornellas RMS, Arcucio LB, Oliveira MM, Nicoli JR, Dias CV, Uetanabaro APT, Vinderola G (2016) Characterization of lactobacilli strains derived from cocoa fermentation in the south of Bahia for the development of probiotic cultures. LWT - Food Sci Technol 73:259–266. https://doi.org/10.1016/j.lwt.2016.06.003

    Article  CAS  Google Scholar 

  5. Albuquerque TMR, Garcia EF, Araújo AO, Magnani M, Saarela M, Souza EL (2018) In vitro characterization of Lactobacillus strains isolated from fruit processing by-products as potential probiotics. Probiotics Antimicrob Proteins 10:704–716. https://doi.org/10.1007/s12602-017-9318-2

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Cui X, Gu S, Yan X, Li R, Xia S, Chen H, Ge J (2019) Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China. Probiotic Antimicrob Proteins 11:1086–1099. https://doi.org/10.1007/s12602-018-9452-5

    Article  CAS  Google Scholar 

  7. Sharma K, Attri S, Goel G (2019) Selection and evaluation of probiotic and functional characteristics of autochthonous lactic acid bacteria isolated from fermented wheat flour dough babroo. Probiotics Antimicrob Proteins 11:774–784. https://doi.org/10.1007/s12602-018-9466-z

    Article  CAS  PubMed  Google Scholar 

  8. Vasiee A, Behbahani BA, Yazdi FT, Mortazavi SA, Noorbakhsh H (2017) Diversity and probiotic potential of lactic acid bacteria isolated from horreh, a traditional Iranian fermented food. Probiotics Antimicrob Proteins 10:258–268. https://doi.org/10.1007/s12602-017-9282-x

    Article  CAS  Google Scholar 

  9. Makete G, Aiyegoro OA, Thantsha S (2016) Isolation, identification and screening of potential probiotic bacteria in milk from south African Saanen goats. Probiotics Antimicrob Proteins 9(3):246–254. https://doi.org/10.1007/s12602-016-9247-5

    Article  CAS  Google Scholar 

  10. Reda RM, Selim KM, El-Sayed M, El-Hady A (2018) In vitro selection and identification of potential probiotics isolated from the gastrointestinal tract of Nile Tilapia, Oreochromis niloticus. Probiotics Antimicrob Proteins 10:692–703. https://doi.org/10.1007/s12602-017-9314-6

    Article  CAS  PubMed  Google Scholar 

  11. Verso LL, Lessard M, Talbot G, Fernandez B, Fliss I (2018) Isolation and selection of potential probiotic bacteria from the pig gastrointestinal tract. Probiotics Antimicrob Proteins 10:299–312. https://doi.org/10.1007/s12602-017-9309-3

    Article  CAS  PubMed  Google Scholar 

  12. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187):897–1000. https://doi.org/10.1126/science.1246752

    Article  CAS  Google Scholar 

  13. Ramos CL, Thorsen L, Schwan RF, Jespersen L (2013) Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol 36(1):22–29. https://doi.org/10.1016/j.fm.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  14. Ramos CL, Sousa ESO, de Ribeiro J, Almeida TMM, Santos CCA, Abegg MA, Schwan RF (2015). Microbiological and chemical characteristics of tarubá, an indigenous beverage produced from solid cassava fermentation. Food Microbiol 49(0): 182–188. https://doi.org/10.1016/j.fm.2015.02.005

  15. Puerari C, Magalhães-Guedes KT, Schwan RF (2015) Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol 46:210–217. https://doi.org/10.1016/j.fm.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  16. Klocke M, Mundt K, Idler C, Mceniry J, O’kiely P, Barth S (2006) Monitoring Lactobacillus plantarum in grass silages with the aid of 16S rDNA-based quantitative real-time PCR assays. Syst Appl Microbiol 29:49–58. https://doi.org/10.1016/j.syapm.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  17. Sandi S, Sari M L, Sahara E, Supriyadi A, Miksusanti Gofar N, Asmak (2019) Acid resistance test of probiotic isolated from silage forage swamp on in vitro digestive tract. Indones J Fundam App Chemi 15–20. https://doi.org/10.24845/ijfac.v4.i1.15

  18. Soundharrajan I, Kim D, Kuppusamy P, Muthusamy K, Lee HJ, Choi KC (2019) Probiotic and Triticale silage fermentation potential of Pediococcus pentosaceus and Lactobacillus brevis and their impacts on pathogenic bacteria. Microorganisms 7:318. https://doi.org/10.3390/microorganisms7090318

    Article  CAS  PubMed Central  Google Scholar 

  19. Frederici CF, Campana R, Ciandrini E, Blasi G, Baffone W (2014) Identification and functional traits of lactic acid bacteria isolated from Ciauscolo salami produced in Central Italy. Meat Sci 98:575–584. https://doi.org/10.1016/j.meatsci.2014.05.019

    Article  CAS  Google Scholar 

  20. Barbosa MS, Todorov SD, Ivanova I, Chobert J, Haert T, Franco BDGM (2015) Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol 46:254–262. https://doi.org/10.1016/j.fm.2014.08.004

    Article  CAS  Google Scholar 

  21. Schwan RF (1998) Cocoa fermentations conducted with a defined microbial cocktail inoculum. Appl Environ Microbiol 64(4):1477–1483. https://doi.org/10.1128/AEM.64.4.1477-1483.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Revi Food Sci Nutr 44(4):205–221. https://doi.org/10.1080/10408690490464104

    Article  CAS  Google Scholar 

  23. Oliveira JS, Costa K, Acurcio LB, Sandes SH, Cassali GD, Uetanabaro APT, Costa AM, Nicoli JR, Neumann E, Porto ALF (2018) In vitro and in vivo evaluation of two potential probiotic lactobacilli isolated from cocoa fermentation (Theobroma cacao L.). J Funct Foods 47:184–191. https://doi.org/10.1016/j.jff.2018.05.055

    Article  CAS  Google Scholar 

  24. Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418. https://doi.org/10.1101/gr.5.4.408

    Article  CAS  PubMed  Google Scholar 

  25. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S RNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lane DJ (1991) S/23S rRNA sequencing. In nucleic acid techniques in bacterial systematics (ed). Stackebrandt E, Goodfellow M, pp 115-175 New York: john Wiley & sons ltd.

  27. Bautista-Gallego J, Arroyo-López FN, Rantsiou K, Jiménez-Díaz R (2013) Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Res Int 50:135–142. https://doi.org/10.1016/j.foodres.2012.10.004

    Article  CAS  Google Scholar 

  28. Ahn T, Kim GB, Lim KS, Baek YJ, Kim HU (2003) Desconjugation of bile salts by Lactobacillus acidophilus isolates. Int Dairy J 13(4):303–311. https://doi.org/10.1016/S0958-6946(02)00174-7

    Article  CAS  Google Scholar 

  29. Marshall VM (1979) A note on screening hydrogen peroxide producing lactic acid bacteria using a non-toxic chromogen. J Appl Bacteriol 47:327–328. https://doi.org/10.1111/j.1365-2672.1979.tb01762.x

    Article  Google Scholar 

  30. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hütt P, Shchepetova J, Lõivukene K, Kullisaar T, Mikelsaar M (2006) Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J Appl Microb 100(6):1324–1332. https://doi.org/10.1111/j.1365-2672.2006.02857.x

    Article  Google Scholar 

  32. Tiago I, Teixeira I, Silva S, Chung P, Veríssimo A, Manaia CM (2004) Metabolic and genetic diversity of mesophilic and thermophilic bacteria isolated from composted municipal sludge on poly-e-caprolactones. Curr Microbiol 49:407–414. https://doi.org/10.1007/s00284-004-4353-0

    Article  CAS  PubMed  Google Scholar 

  33. Ben Omar N, Castro A, Lucas R, Abrioue H, Yousif NM, Franz CM, Holzapfel WH, Pérez-Pulido R, Martinez-Cañamero M, Gálves A (2004) Functional and safety aspects of enterococci isolated from different Spanish foods. Syst Appl Microbiol 27:118–130. https://doi.org/10.1078/0723-2020-00248

    Article  CAS  PubMed  Google Scholar 

  34. Semedo T, Santos MA, Martins P, Lopes MFS, Marques JJF, Tenreiro R, Crespo MTB (2003) Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol 41:2569–2576. https://doi.org/10.1128/JCM.41.6.2569-2576.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yousif NMK, Dawyndt P, Abriouel H, Wijaya A, Schillinger U, Vancanneyt M, Swings J, Dirar HA, Holzapfel WH, Franz CMAP (2005) Molecular characterization, technological properties and safety aspects of enterococci from ‘Hussuwa’, an African fermented sorghum product. J Appl Microbiol 98:216–228. https://doi.org/10.1111/j.1365-2672.2004.02450.x

    Article  CAS  PubMed  Google Scholar 

  36. Divya JB, Varsha KK, Nampoothiri KM (2012) Newly isolated lactic acid bacteria with probiotic features for potential application in food industry. Appl Biochem Biotechnol 167:1314–1324. https://doi.org/10.1007/s12010-012-9561-7

    Article  CAS  PubMed  Google Scholar 

  37. Todorov SD, Furtado DN, Saad SMI, Tome E, Franco BDGM (2011) Potential beneficial properties of bacteriocin-producing lactic acid bacteria isolated from smoked salmon. J Appl Microbiol 110:971–986. https://doi.org/10.1111/j.1365-2672.2011.04950.x

    Article  CAS  PubMed  Google Scholar 

  38. Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LMT (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104:465–477. https://doi.org/10.1111/j.1365-2672.2007.03558.x

    Article  CAS  PubMed  Google Scholar 

  39. Ranadheera CS, Evans CA, Adams MC, Baines SK (2014) Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion. J Funct Foods 8:18–25. https://doi.org/10.1016/j.jff.2014.02.022

    Article  CAS  Google Scholar 

  40. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122. https://doi.org/10.1002/pmic.200300497

    Article  CAS  PubMed  Google Scholar 

  41. Van De Gutche M, Serror P, Chervaux C, Smokvina T, Stanislav D (2002) Stress response in lactic acid bacteria. Anton Leeuw 82:187–216

    Article  Google Scholar 

  42. Tokatli M, Gulgor G, Elmaci SB, Isleyen NA, Ozcelik F (2015) In vitro properties of potencial probiotic indigenous lactic acid bacteria originating from tradicional pickles. Biomed Res Int 2015:1–8. https://doi.org/10.1155/2015/315819

    Article  CAS  Google Scholar 

  43. Gilliland SE, Staley TE, Bush LJ (1985) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 67:3045–3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7

    Article  Google Scholar 

  44. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78. https://doi.org/10.1016/j.tifs.2003.09.004

    Article  CAS  Google Scholar 

  45. Lee N-K, Paik H-D (2001) Partial characterization of lacticin NK24, a newly identified bacteriocin Lactococcus lactis NK24 isolated from Jeot-gal. Food Microbiol 18(1):17–24. https://doi.org/10.1006/fmic.2000.0368

    Article  CAS  Google Scholar 

  46. Todorov SD, Dicks LMT (2007) Bacteriocin production by Lactobacillus pentosus ST712BZ isolated from Boza. Braz J Microbiol 38(1):166–172. https://doi.org/10.1590/S1517-83822007000100034

    Article  Google Scholar 

  47. Azhar NS, Zin NHM, Haziyamin Hamid THTA (2017) Lactococcus Lactis strains A5 producing nisin-like bacteriocin active against gram positive and negative bacteria. Trop life Sci Res 28(2):107–118. https://doi.org/10.21315/tlsr2017.28.2.8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rajoka MSR, Mehwish HM, Siddiq M, Haobin Z, Zhu J, Yan L, Shao D, Xu X, Shi J (2017) Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT-Food Sci Technol 84:271–280. https://doi.org/10.1016/j.lwt.2017.05.055

    Article  CAS  Google Scholar 

  49. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6):438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  PubMed  Google Scholar 

  50. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative in vitro study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904. https://doi.org/10.1016/S0963-9969(03)00098-X

    Article  CAS  Google Scholar 

  51. De Vries MC, Vaughan EE, Kleerebezem M, De Vos WM (2006) Lactobacillus plantarum survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028. https://doi.org/10.1016/j.idairyj.2005.09.003

    Article  CAS  Google Scholar 

  52. Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Wang Y, Zhang H (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701. https://doi.org/10.1016/j.foodcont.2009.10.010

    Article  CAS  Google Scholar 

  53. Iñiguez-Palomares C, Pérez-Morales R, Acedo-Félix (2008) Evaluation of probiotic properties in Lactobacillus isolated from small intestine of piglets. Rev Latinoam Microbiol 49:46–54

    Google Scholar 

  54. Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63(5):1725–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ehrmann MA, Kurzak P, Bauer J, Vogel RF (2002) Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J Appl Microbiol 92(5):966–975. https://doi.org/10.1046/j.1365-2672.2002.01608.x

    Article  CAS  PubMed  Google Scholar 

  56. Vera-Pingitore E, Jimenez ME, Dallagnol A, Belfiore C, Fontana C, Fontana P, Wright AV, Vignolo G, Plumed-Ferrer C (2016) Screening and characterization of potential probiotic and starter bacteria for plant fermentations. LWT-Food Sci Technol 71:288–294. https://doi.org/10.1016/j.lwt.2016.03.046

    Article  CAS  Google Scholar 

  57. Sophatha B, Piwat S, Teanpaisan R (2020) Adhesion, anti-adhesion and aggregation properties relating to surface charges of selected Lactobacillus strains: study in Caco-2 and H357 cells. Arch Microbiol:1–9. https://doi.org/10.1007/s00203-020-01846-7

  58. Olsen I, Progulske-Fox A (2015) Invasion of Porphyromonas gingivalis strains into vascular cells and tissue. J Oral Microbiol 7:28788. https://doi.org/10.3402/jom.v7.2878

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Federal District Foundation for Research (project number—193.000.812 / 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana dos Santos Leandro.

Ethics declarations

Ethical Approval/Ethics Statement

The study was not conducted with animals and humans.

Conflict of Interest

The authors have declared no conflict of interest for this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Leandro, E., Ginani, V.C., de Alencar, E.R. et al. Isolation, Identification, and Screening of Lactic Acid Bacteria with Probiotic Potential in Silage of Different Species of Forage Plants, Cocoa Beans, and Artisanal Salami. Probiotics & Antimicro. Prot. 13, 173–186 (2021). https://doi.org/10.1007/s12602-020-09679-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09679-y

Keywords

Navigation