Skip to main content
Log in

Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We recently reported that non-preconditioned hearts from diet-induced obese rats showed, compared to controls, a significant reduction in infarct size after ischaemia/reperfusion, whilst ischaemic preconditioning was without effect. In view of the high circulating FFA concentration in diet rats, the aims of the present study were to: (i) compare the effect of palmitate on the preconditioning potential of hearts from age-matched controls and diet rats (ii) elucidate the effects of substrate manipulation on ischaemic preconditioning. Substrate manipulation was done with dichloroacetate (DCA), which enhances glucose oxidation and decreases fatty acid oxidation. Isolated hearts from diet rats, age-matched controls or young rats, were perfused in the working mode using the following substrates: glucose (10 mM); palmitate (1.2 mM)/3% albumin) + glucose (10 mM) (HiFA + G); palmitate (1.2 mM/3% albumin) (HiFA); palmitate (0.4 mM/3% albumin) + glucose(10 mM) (LoFA + G); palmitate (0.4 mM/3% albumin) (LoFA). Hearts were preconditioned with 3 × 5 min ischaemia/reperfusion, followed by 35 min coronary ligation and 60 min reperfusion for infarct size determination (tetrazolium method) or 20 min global ischaemia/10 or 30 min reperfusion for Western blotting (ERKp44/42, PKB/Akt). Preconditioning of glucose-perfused hearts from age-matched control (but not diet) rats reduced infarct size, activated ERKp44/42 and PKB/Akt and improved functional recovery during reperfusion (ii) perfusion with HiFA + G abolished preconditioning and activation of ERKp44/42 (iii) DCA pretreatment largely reversed the harmful effects of HiFA. Hearts from non-preconditioned diet rats exhibited smaller infarcts, but could not be preconditioned, regardless of the substrate. Similar results were obtained upon substrate manipulation of hearts from young rats. Abolishment of preconditioning in diet rats may be due to altered myocardial metabolic patterns resulting from changes in circulating FA. The harmful effects of HiFA were attenuated by stimulation of glycolysis and inhibition of FA oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A (2008) Ghaleh B Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol 295(4):H1580–H1586. https://doi.org/10.1152/ajpheart.00379.2008

    Article  CAS  PubMed  Google Scholar 

  2. du Toit EF, Smith W, Muller C, Strijdom H, Stouthammer B, Woodiwiss AJ, Norton GR, Lochner A (2008) Myocardial susceptibility to ischemic-reperfusion injury in a prediabetic model of dietary-induced obesity. Am J Physiol Heart Circ Physiol 294(5):H2336–H2343. https://doi.org/10.1152/ajpheart.00486.2007

    Article  CAS  PubMed  Google Scholar 

  3. Wensley I, Salaveria K, Bulmer AC, Donner DG, duToit EF (2013) Myocardial structure, function and ischemic tolerance in a rodent model of obesity with insulin resistance. Exp Physiol 98(11):1552–1564. https://doi.org/10.1113/expphysiol.2013.074948

    Article  CAS  PubMed  Google Scholar 

  4. Chase PJ, Davis PG, Bensimhon DR (2014) The obesity paradox in chronic heart failure: what does it mean? Curr Heart Fail Rep 11(1):11–17. https://doi.org/10.1007/s11897-013-0184-2

    Article  CAS  Google Scholar 

  5. Clark AL, Fonarow GC, Horwich TB (2014) Obesity and the obesity paradox in heart failure. Prog Cardiovasc Dis 56(4):409–410. https://doi.org/10.1016/j.pcad.2013.10.004

    Article  PubMed  Google Scholar 

  6. Niedziela J, Hadzik B, Niedziela N, Gasior M et al (2014) The obesity paradox in acute coronary syndrome: a meta-analysis. Europ J Epidemiol 29(11):801–812. https://doi.org/10.1001/s10654-014-9661-9

    Article  CAS  Google Scholar 

  7. Miki T, Itoh T, Sunaga D, Miura T (2012) Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 11:67. https://doi.org/10.1186/1475-2840-11-67

    Article  PubMed  PubMed Central  Google Scholar 

  8. Whittington HJ, Babu GG, Mocanu NM, Yellon DM, Hausenloy DJ (2012) The diabetic heart: too sweet for its own good? Cardiol Res Pract 2012:845698. https://doi.org/10.1155/2012/845698

    Article  PubMed  PubMed Central  Google Scholar 

  9. Clark C, Smith W, Lochner A, du Toit EF (2011) The effects of gender and obesity on myocardial tolerance to ischemia. Physiol Res 60(2):291–301

    Article  CAS  PubMed  Google Scholar 

  10. Nduhirabandi F, du Toit EF, Blackhurst D, Marais D, Lochner A (2011) Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischaemia and reperfusion injury in a pre-diabetic model of diet-induced obesity. J Pineal Res 50(2):171–192. https://doi.org/10.1111/j.1600-079x.2010.00826.x

    Article  CAS  PubMed  Google Scholar 

  11. Donner D, Headrick JP, Peart JN, du Toit EF (2013) Obesity improves myocardial ischemic tolerance and RISK signalling in insulin-insensitive rats. Dis Mod Mech 6(2):457–466. https://doi.org/10.1242/dmm.010959

    Article  CAS  Google Scholar 

  12. Balakumar P, Sharma NK (2012) Healing the diabetic heart: does myocardial preconditioning work? Cell Signal 24(1):53–59. https://doi.org/10.1016/cellsig.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  13. Lejay A, Fang F, John R, Van JAD, Barr M, Thaveau F, Chafke N, Geny B, Scholey JW (2016) Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol 91:11–22. https://doi.org/10.1016/yjmcc.2015.12020

    Article  CAS  PubMed  Google Scholar 

  14. Przyklenk K (2013) Reduction of myocardial infarct size with ischemic conditioning: physiologic and technical considerations. Anesth Analg 117(4):891–901. https://doi.org/10.1213/ANE.ob013e318294fc63

    Article  PubMed  Google Scholar 

  15. Kristiansen SB, Lofgren B, Stottrup NB, Lhatir D, Nielsen-Kudsk JE, Nielsen TT et al (2004) Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia 47(10):1716–1721. https://doi.org/10.1007/s00125-004-1514-4

    Article  CAS  PubMed  Google Scholar 

  16. Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW (2007) Myocardial preconditioning against ischemia–reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol 292(2):R920–R926. https://doi.org/10.1152/ajpregu.00520.2006

    Article  CAS  PubMed  Google Scholar 

  17. Zhu SG, Xi L, Kukreja RC (2012) Type 2 diabetic obese db/db mice are refractory to myocardial ischaemic postconditioning in vivo: potential role for Hsp 20, F1-ATPase delta and Echs1. J Cell Mol Med 16(4):950–958. https://doi.org/10.1111/j.1582-4934.2011.01376.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whittington HJ, Harding I, Stephenson CI, Bell R, Hausenloy DJ, Mocanu MM et al (2013) Cardioprotection in the aging, diabetic heart: the loss of protective Akt signaling. Cardiovasc Res 99(4):694–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ji L, Zhang X, Liu W, Huang Q, Fu F, Ma H et al (2013) AMPK-regulated and Akt-dependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury. PLoS ONE 8(7):e69910. https://doi.org/10.1371/journal.pone.0069910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hadour G, Ferrera R, Sebbag L, Forrat R, Delaye J, de Lorgeril M (1998) Improved myocardial tolerance to ischaemia in the diabetic rabbit. J Mol Cell Cardiol 30(9):1869–1875. https://doi.org/10.1006/jmcc.1998.0751

    Article  CAS  PubMed  Google Scholar 

  21. Salie R, Huisamen B, Lochner A (2014) High carbohydrate and high fat diets protect the heart against ischaemia/reperfusion injury. Cardiovasc Diabetol 13:109. https://doi.org/10.1188/1475-2840-13-13

    Article  PubMed  PubMed Central  Google Scholar 

  22. Song P, Wu Y, Xu J, Xie Z, Dong Y, Zhang M et al (2007) Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase angiotensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation 116(14):1585–1595. https://doi.org/10.1161/CICULATIONAHA,107.716498

    Article  CAS  PubMed  Google Scholar 

  23. Mocanu MN, Yellon DM (2007) PTEN, the Achilles' heel of myocardial ischaemia/reperfusion injury? Br J Pharmacol 150(7):833–838. https://doi.org/10.1038/sj.bjp.0707155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang B, Raedschelders K, Shravah J, Hui Y, Safaei HG, Chen DD et al (2011) Differences in myocardial PTEN expression and Akt signaling in type 2 diabetic and nondiabetic patients undergoing coronary bypass surgery. Clin Endocrinol 74(6):705–713. https://doi.org/10.1111/j.1365-2265.2011.03979.x

    Article  CAS  Google Scholar 

  25. Przyklenk K, Maynard M, Greiner DL, Whittaker P (2011) Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 14(5):781–790. https://doi.org/10.1089/ars.2010.3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Przyklenk K (2011) Efficacy of cardioprotective conditioning strategies in aging and diabetic cohorts: the comorbidity conundrum. Drugs Aging 28(5):331–343. https://doi.org/10.2165/11587190.000000000.00000

    Article  PubMed  Google Scholar 

  27. Xia X, Zhao B, Wu Y, Hou JB, Zhang L, Xu JJ et al (2011) Ginsenoside Rb1 conditioning enhances eNOS expression and attenuates myocardial ischemia/reperfusion injury in diabetic rats. J Biomed Biotechnol 2011:767930. https://doi.org/10.1155/2011/767930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim HS, Cho JE, Hwang KC, Shim YH, Lee JH, Kwak YL (2010) Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat hearts in association with antiapoptotic pathways of survival. Eur J Pharmacol 628(1–3):132–139. https://doi.org/10.1016/j.ejphar.2009.11.032

    Article  CAS  PubMed  Google Scholar 

  29. Wilson CR, Tran MK, Salazar KL, Young ME, Taegtmeyer H (2007) Western diet but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats. Biochem J 406(3):457–467. https://doi.org/10.1042/BJ20070392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harmancey R, Vasquez HG, Guthrie PH, Taegtmeyer H (2013) Decreased long-chain fatty acid oxidation impairs postischemic recovery of the insulin-resistant rat heart. FASEB J 27(10):3966–3978. https://doi.org/10.1096/fj.13-234914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mazumder PK, O’Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, Abel ED (2004) Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53(9):2366–2374. https://doi.org/10.2337/diabetes.53.9.2366

    Article  CAS  PubMed  Google Scholar 

  32. Buchanan J, Mazumder PK, Ping H, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, Litwin SE, Abel ED (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146(12):5341–5349. https://doi.org/10.1210/en.2005-0938

    Article  CAS  PubMed  Google Scholar 

  33. Opie LH (1998) The Heart. Physiology, from cell to circulation. Chapter 11. Lippincott-Raven Publishers, Philadelphia

  34. Lopaschuk G (2000) Regulation of carbohydrate metabolism in ischemia and reperfusion. Am Heart J 139(2 Pt 3):5115–5119. https://doi.org/10.1067/mhj.2000.103919

    Article  Google Scholar 

  35. Van der Vusse GJ, Van Bilsen M (2006) Free fatty acids and postischemic myocardial function. Semin Cardiothorac Vasc Anesth 10(3):231–235. https://doi.org/10.1177/1089253206291319

    Article  PubMed  Google Scholar 

  36. Carroll R, Carley AN, Dyck JR, Severson DL (2005) Metabolic effects of insulin on cardiomyocytes from control and diabetic db/db mouse hearts. Am J Physiol Endocrinol Metab 288:E900–E906. https://doi.org/10.1152/ajpendo.DD491.2004

    Article  CAS  PubMed  Google Scholar 

  37. Aasum E, Belke DD, Severson DL, Riemersma RA, Cooper M, Andreassen M, Larsen TS (2002) Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol Heart Circ Physiol. 283(3):H949–H957. https://doi.org/10.1152/ajpheart.00226.2001

    Article  CAS  PubMed  Google Scholar 

  38. Belke DD, Larsen TS, Gibbs EM, Severson DL (2000) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 279(5):E1104–E1113. https://doi.org/10.1152/ajpendo.2000.27915.E1104

    Article  CAS  PubMed  Google Scholar 

  39. Oliver MF, Yates PA (1971) Induction of ventricular arrhythmias by elevation of arterial free fatty acids in experimental myocardial infarction. Cardiology 56(1):359–364. https://doi.org/10.1159/0001.169385

    Article  CAS  PubMed  Google Scholar 

  40. Oliver MF, Opie LH (1994) Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet 343(8890):155–158. https://doi.org/10.1016/s0140-6736(94)90939-3

    Article  CAS  PubMed  Google Scholar 

  41. Kurien VA, Yates PA, Oliver MF (1971) The role of free fatty acids in the production of ventricular arrhythmias after acute coronary artery occlusion. Eur J Clin Invest 1(4):225–241. https://doi.org/10.1111/eci.1976.4.225

    Article  CAS  PubMed  Google Scholar 

  42. Liedtke AJ, DeMaison L, Eggelston AM, Cohen LM, Nellis SH (1988) Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62(3):535–542. https://doi.org/10.1161/01.res.62.3.535

    Article  CAS  PubMed  Google Scholar 

  43. Lopaschuk GD, Spafford MA, Davies NJ, Wall SJ (1990) Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66(2):546–553. https://doi.org/10.1161/01.res.66.2.546

    Article  CAS  PubMed  Google Scholar 

  44. Beresewicz A, Dobrzyn A, Gorski J (2002) Accumulation of specific ceramides in ischemic/reperfused heart. J Physiol Pharmacol 53(3):371–382 PMID: 12369735

    CAS  PubMed  Google Scholar 

  45. Yue Y, Qin Q, Downey JM, Critz SD (2002) The relative order of mK(ATP) channels, free radicals and p38MAPK in preconditioning ‘s protective pathway in rat heart. Cardiovasc Res 55(3):681–689. https://doi.org/10.1016/s0008-6363(02)00452-2

    Article  CAS  PubMed  Google Scholar 

  46. Dalgas C, Povlsen JA, Lufgren B, Erichsen SB, Botker HE (2012) Effects of fatty acids on cardioprotection by pre-ischaemic inhibition of the malate-aspartate shuttle. Clin Exp Pharmacol Physiol 39(10):878–885.

    Article  CAS  PubMed  Google Scholar 

  47. Latipaa PM, Hiltunen JK, Peuhkurinen KJ, Hassinen IE (1983) Regulation of fatty acid oxidation in heart muscle. Effects of pyruvate and dichloroacetate. Biochim Biophys Acta 752(1):162–171. https://doi.org/10.1016/0005-2760(83)90244-8

    Article  CAS  PubMed  Google Scholar 

  48. McAllister A, Allison SP, Randle PJ (1973) Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo. Biochem J 134(4):1067–1081. https://doi.org/10.1024/bj1341067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pickavance LC, Tadayyon M, Widdowson PS, Buckingham RE, Wilding JPH (1999) Therapeutic index for rosiglitazone in dietary obese rats: separation of efficacy and haemodilution. Brit J Pharmacol 128(7):1570–1576. https://doi.org/10.1038/sj.bjp.0702932

    Article  CAS  Google Scholar 

  50. Lochner A, Genade S, Moolman JA (2003) Ischaemic preconditioning: infarct size is more reliable endpoint than functional recovery. Basic Res Cardiol 98(5):337–346. https://doi.org/10.1007/s00395-003-0427-6

    Article  CAS  PubMed  Google Scholar 

  51. Ussher JR, Wang W, Gandhi M, Keung W et al (2012) Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res 94(2):359–369. https://doi.org/10.1093/cvr/cvs/129

    Article  CAS  PubMed  Google Scholar 

  52. Salie R, Moolman JA, Lochner A (2012) The mechanism of beta-adrenergic preconditioning; role for adenosine and ROS during triggering and mediation. Basic Res Cardiol 107(5):281–303. https://doi.org/10.1007/s00395-012-0281-5

    Article  CAS  PubMed  Google Scholar 

  53. Bradford MM (1976) A rapid and sensitive method for quantification microgram quantities protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  54. Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD (2002) High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency on post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol 39(4):718–725. https://doi.org/10.1016/s0735-1097(01)01803-4

    Article  CAS  PubMed  Google Scholar 

  55. Ussher JR, Koves TR, Jaswal JS, Zhang L et al (2009) Insulin-stimulated cardiac glucose oxidation in increased in high-fat diet-induced obese mice lacking malonyl CoA decarboxylase. Diabetes 58(8):1766–1775. https://doi.org/10.2335/db09-0011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ussher JR, Lopaschuk GD (2006) Clinical implications of energetic problems in cardiovascular disease. Heart Metab 32:9–17

    Google Scholar 

  57. Saddik M, Lopaschuk GD (1991) Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266(13):8162–8170

    CAS  PubMed  Google Scholar 

  58. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential Pharmacol Interv Cardiovasc Res 33(2):243–257. https://doi.org/10.1016/s0008-6363(96)00245-3

    Article  CAS  Google Scholar 

  59. Fukushima A, Milner K, Gupta A, Lopaschuk GD (2015) Myocardial energy substrate metabolism in heart failure : from pathways to therapeutic targets. Curr Pharm Des 21(25):3654–3664. https://doi.org/10.2174/1381612821666150710150445

    Article  CAS  PubMed  Google Scholar 

  60. Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 297(3):E578–E591. https://doi.org/10.1152/ajpendo.0093.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258. https://doi.org/10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  62. Lopaschuk GD, Wambolt RB, Barr RL (1993) An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 264(1):135–144

    CAS  PubMed  Google Scholar 

  63. Gambert S, Vergely C, Filomenko R, Moreau D, Bettaieb A, Opie LH, Rochette L (2006) Adverse effects of free fatty acid associated with increased oxidative stress in postischemic isolated rat hearts. Mol Cell Biochem 263(1):147–152. https://doi.org/10.1007/s11010-006-2518-9

    Article  CAS  Google Scholar 

  64. Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 12(3–4):217–234. https://doi.org/10.1007/s10741-007-9026-1

    Article  CAS  PubMed  Google Scholar 

  65. Balakumar P, Babbar L (2012) Preconditioning the hyperlipidemic myocardium: fact or fantasy? Cell Signal 24(3):589–595. https://doi.org/10.1016/j.cellsig.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  66. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79(2):609–634. https://doi.org/10.1152/physrev.1999.79.2.609

    Article  CAS  PubMed  Google Scholar 

  67. Nadtochiy SM, Urciuoli W, Zhang J, Schafer X, Munger J, Brookes PS (2015) Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT 1in rapid cardioprotective metabolic adaptation. J Mol Cell Cardiol 88:64–72. https://doi.org/10.1016/j.yjmcc.2015.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fatima S, Hu X, Gong R-H, Huang C et al (2019) Palmitic is an intracellular signalling molecule involved in disease development. Cell Mol Life Sci 76(13):2547–2557. https://doi.org/10.1007/s00018-019-03092-7

    Article  CAS  PubMed  Google Scholar 

  69. Soltys C-LM, Buchholz L, Gandhi M, Clanachan AS, Walsh K, Dyck JR (2002) Phosphorylation of cardiac protein kinase B is regulated by palmitate. Am J Physiol Heart Circ Physiol 283(3):H1056–H1064. https://doi.org/10.1152/ajpheart.00275.2002

    Article  CAS  PubMed  Google Scholar 

  70. Sinha S et al (2004) Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem 279(40):41294–41301. https://doi.org/10.1074/jbc.M406514200

    Article  CAS  PubMed  Google Scholar 

  71. Aubert-Foucher E, Font B, Gautheron DC (1984) Rabbit heart mitochondrial hexokinase: solubilization and general properties. Arch Biochem Biophys 232(11):391–399. https://doi.org/10.1016/0003-9861(84)90544-x

    Article  CAS  PubMed  Google Scholar 

  72. Lawrence GM, Trayer IP (1985) The localisation of hexokinase isoenzymes in red and white skeletal muscles of the rat. Histochem J 17(3):353–371. https://doi.org/10.1007/bf01004597

    Article  CAS  PubMed  Google Scholar 

  73. Ritov VB, Kellek DE (2001) Hexokinase isozyme distribution in human skeletal muscle. Diabetes 50(6):1256–1262. https://doi.org/10.2337/diabetes.50.6.1253

    Article  Google Scholar 

  74. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localisation and metabolic function. J Exp Biol 206(12):2049–2057. https://doi.org/10.1242/jeb.00241

    Article  CAS  PubMed  Google Scholar 

  75. Southworth R, Davey KAB, Warley A, Garlick PB (2007) A reevaluation of the roles of Hexokinase I and II in the heart. Am J Physiol Heart Circ Physiol 292(1):H378–H386. https://doi.org/10.1152/ajpheart.00664.2006

    Article  CAS  PubMed  Google Scholar 

  76. Smeele KM, Southworth R, Wu R, Xie C, Nederlof R et al (2011) Disruption of hexokinase II-mitochondrial binding blocks ischemic preconditioning and causes rapid cardiac fibrosis. Circ Res 108(10):1165–1169. https://doi.org/10.1161/CIRCRESAHA.111.244962

    Article  CAS  PubMed  Google Scholar 

  77. Nederlof R, Eerbeek O, Hollmann MWW, Siuthworth R, Zuurbier CJ (2014) Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in the heart. Br J Pharmacol 171(8):2067–2079. https://doi.org/10.1111/bph.12363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bromage DI, Pickard JM, Rossello X et al (2017) Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis. Cardiovasc Res 113(3):288–297. https://doi.org/10.1093/cvr/cvw219

    Article  CAS  PubMed  Google Scholar 

  79. Rossello X, He Z, Yellon DM (2018) Myocardial infarct size reduction provided by local and remote ischaemic preconditioning: reference values from the Hatter Cardiovascular Institute. Cardiovasc Drugs Ther 32(2):127–133. https://doi.org/10.1007/s10557-018-6788-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Lochner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lochner, A., Genade, S., Genis, A. et al. Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Mol Cell Biochem 473, 111–132 (2020). https://doi.org/10.1007/s11010-020-03812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03812-9

Keywords

Navigation