Skip to main content
Log in

Morpho-physiological Effects and Molecular Mode of Action of Mepiquat Chloride Application in Cotton: A Review

  • Review
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Mepiquat chloride (MC) (1,1-dimethylpiperidinum chloride) is a plant growth regulator, usually sprayed on cotton foliage at different growth stages as a practical tool for cotton management. MC foliar applications reduce plant height, leaf area, node distance, and plant canopy but increase light interception within the canopy that leads to increase yields. Application at squaring stage reduces the partitioning of photoassimilates towards main stem, branches, and growing points but increases partitioning to the reproductive organs. Furthermore, MC application increases the net photosynthesis rate in cotton leaves as compared with control and triggers carbohydrate formation by improved source-sink relationship. Disturbed carbohydrate metabolism could affect the activity of sucrose metabolic enzymes resulted in variable yield responses. More precisely, it retards the vegetative growth by inhibiting the activity of gibberellin involved in cell elongation, which inhibits the signaling pathways and disturbs gibberellin homeostasis by upregulation of site-specific genes that ultimately results in keeping the plant stature shorter. Besides this, it enhances the yield due to raised boll setting on the lower branches by manipulating a compact canopy. This review will focus on cotton morphology and yield responses to MC application that have been published in last decades. Various physiological mechanisms such as carbohydrate metabolism and sucrose-related enzymes as well as its molecular mode of action in cotton have also been discussed. Further research is needed to exploit the role of MC specifically in gibberellin inhibition and carbohydrate metabolism with its related enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MC:

Mepiquat chloride

PGRs:

Plant growth regulators

GA:

Gibberellin

Pn :

Net photosynthesis

Rubisco:

Ribulose 1,5-bisphosphate carboxylase oxygenase

SPS:

Sucrose phosphate synthase

SS:

Sucrose synthase

SAI:

Soluble acid invertase

NI:

Neutral invertase

UDPG:

Uridine diphosphate glucose

a.i:

Active ingredient

References

  • Abid M, Tian Z, Ata-Ul-Karim ST, Cui Y, Liu Y, Zahoor R, Jiang D, Dai T (2016a) Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front. Plant Sci 7:981

    Google Scholar 

  • Abid M, Tian Z, Ata-Ul-Karim ST, Liu Y, Cui Y, Zahoor R, Jiang D, Dai T (2016b) Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and sensitive wheat cultivars. Plant Physiol Biochem 106:218–227

    CAS  PubMed  Google Scholar 

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    CAS  PubMed  Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32:663–679

    CAS  Google Scholar 

  • Ali S, Hafeez A, Ma X, Tung SA, Liu A, Chattha MS, Shah AN, Dan L, Ahmad S, Jiahao L, Yang G (2019) Equal potassium-nitrogen ratio regulated the nitrogen metabolism and yield of high-density late planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Ind Crop Prod 129:231–241

    CAS  Google Scholar 

  • Ali S, Hafeez A, Ma X, Tung SA, Liu A, Shah AN, Chattha MS, Zhang Z, Yang G (2018) Potassium relative ratio to nitrogen considerably favors carbon metabolism in late-planted cotton at high planting density. Field Crops Res 223:48–56

    Google Scholar 

  • Ali S, Hafeez A, Ma X, Tung SA, Yang G (2020) Relative potassium ratio balanced the carbon-nitrogen assimilation in cotton leaf under reducing nitrogen application. J Soil Sci Plant Nutr 20:761–774

    CAS  Google Scholar 

  • Bhowmik PK, Matsui T, Kawada K, Suzuki H (2001) Seasonal changes of asparagus spears in relation to enzyme activities and carbohydrate content. Sci Hortic 88:1–9

    CAS  Google Scholar 

  • Biles S, Cothren J (1996) Optimized timing of cyclone applications for cotton desiccation. In, Austin

  • Biles SP, Cothren JT (2001) Flowering and yield response of cotton to application of mepiquat chloride and PGR-IV. Crop Sci 41:1834–1837

    CAS  Google Scholar 

  • Bogiani JC, Rosolem CA (2009) Sensibility of cotton cultivars to mepiquat chloride. Pesqui Agropecu Bras 44:1246–1253

    Google Scholar 

  • Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci 106:13118–13123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Confalone A, Lizaso JI, Ruiz-Nogueira B, López-Cedrón FX, Sau F (2010) Growth, PAR use efficiency, and yield components of field-grown Vicia faba L. under different temperature and photoperiod regimes. Field Crops Res 115:140–148

    Google Scholar 

  • Cook DR, Kennedy CW (2000) Early flower bud loss and mepiquat chloride effects on cotton yield distribution. Crop Sci 40:1678–1684

    CAS  Google Scholar 

  • Corbin BR, Frans RE (2017) Protecting cotton (Gossypium hirsutum L.) from fluometuron injury with seed protectants. Weed Sci 39:408–411

    Google Scholar 

  • Cothren JT, Oosterhuis DM (2010) Use of growth regulators in cotton production. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer Netherlands, Dordrecht, pp 289–303

    Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Springer Netherlands, Dordrecht, pp 1–15

    Google Scholar 

  • de Almeida AQ, Rosolem CA (2012) Cotton root and shoot growth as affected by application of mepiquat chloride to cotton seeds. Acta Sci Agron 34:61–65

    Google Scholar 

  • Dodds DM, Banks JC, Barber LT, Boman RK, Brown SM, Edmisten KL, Faircloth JC, Jones MA, Lemon RG, Main CL, Monks CD, Norton ER, Stewart AM, Nichols RL (2010) Beltwide evaluation of commercially available plant growth regulators. J Cotton Sci 14:119–130

    CAS  Google Scholar 

  • Du Q, Zhao XH, Xia L, Jiang CJ, Wang XG, Han Y, Wang J, Yu HQ (2019) Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J Integr Agric 18:395–406

    CAS  Google Scholar 

  • Fang S, Gao K, Hu W, Wang S, Chen B, Zhou Z (2019) Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carbohydrate accumulation. Field Crops Res 231:105–114

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Khaliq A, Kobayashi N (2010) Rice seed invigoration: a review. Org Farm Pest Control Rem Soil Pollut 1:137–175

    Google Scholar 

  • Flexas J, Bota J, Cifre J, Mariano Escalona J, Galmes J, Gullas J, Lefi EK, Florinda Martinez-canellas S, Teresa Moreno M, Ribas-Carbo M, Riera D, Sampol B, Medrano H (2004) Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. Ann Appl Biol 144:273–283

    Google Scholar 

  • Furlani JE, Silva NMD, Carvalho LH, Bortoletto N, Sabino JC, Bolonhezi D (2003) Types of growth regulator application, planting densities and nitrogen levels for the cotton cultivar. Bragantia 22:227–233

    Google Scholar 

  • Gao Z, Liang XG, Zhang L, Lin S, Zhao X, Zhou LL, Shen S, Zhou SL (2017) Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Res 211:1–9

    Google Scholar 

  • Gonias ED, Oosterhuis DM, Bibi AC (2008) Physiologic response of cotton to the insecticide imidacloprid under high-temperature stress. J Plant Growth Regul 27:77–82

    CAS  Google Scholar 

  • Gonias ED, Oosterhuis DM, Bibi AC (2012) Cotton radiation use efficiency response to plant growth regulators. J Agric Sci 150:595–602

    CAS  Google Scholar 

  • Gorim L, Asch F (2014) Seed coating reduces respiration losses and affects sugar metabolism during germination and early seedling growth in cereals. Funct Plant Biol 42:209–218

    Google Scholar 

  • Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22:623–639

    CAS  PubMed  Google Scholar 

  • Gu S, Evers JB, Zhang L, Mao L, Zhang S, Zhao X, Liu S, van der Werf W, Li Z (2014) Modelling the structural response of cotton plants to mepiquat chloride and population density. Ann Bot 114:877–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gwathmey CO, Clement JD (2010) Alteration of cotton source–sink relations with plant population density and mepiquat chloride. Field Crops Res 116:101–107

    Google Scholar 

  • Hafeez A, Ali S, Ma X, Tung SA, Shah AN, Liu A, Ahmed S, Chattha MS, Yang G (2018) Potassium to nitrogen ratio favors photosynthesis in late-planted cotton at high planting density. Indus Crops Prod 124:369–381

    CAS  Google Scholar 

  • Hafeez A, Ali S, Ma X, Tung SA, Shah AN, Liu A, Zhang Z, Liu J, Yang G (2019) Sucrose metabolism in cotton subtending leaves influenced by potassium-to-nitrogen ratios. Nut Cycl Agro 113:201–216

    CAS  Google Scholar 

  • Hafner V (2001) Moddus-universal product for lodging prevention in cereals. ‘In: 5th’; Slovenian Conference on Plant Protection, Catez ob Savi (Slovenia), pp. 6-8

  • Halmann M (1990) Synthetic plant growth regulators. Adv Agron 43:47–105

    CAS  Google Scholar 

  • He ZP, Li PM, Xi HD, Li ZH, Bai YL (1991) The using and development of DPC chemical controlling technique in cotton culture. Suppl Acta Agric Univ Pekinensis 17:58–63 (in Chinese, with English abstract)

  • Hedden P, Thomas Stephen G (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    CAS  PubMed  Google Scholar 

  • Helliwell CA, Sheldon CC, Olive MR, Walker AR, Zeevaart JA, Peacock WJ, Dennis ES (1998) Cloning of the arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci 95:9019–9024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges HF, Reddy VR, Reddy KR (1991) Mepiquat chloride and temperature effects on photosynthesis and respiration of fruiting cotton. Crop Sci 31:1302–1308

    CAS  Google Scholar 

  • Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M, Gibon Y, Muller B (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154:357–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal M, Nisar N, Khan RSA, Hayat K (2005) Contribution of mepiquat chloride in drought tolerance in cotton seedlings. Asian J Plant Sci 4:530–532

    CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A (2006) Seed enhancement with cytokinins: changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul 50:29–39

    CAS  Google Scholar 

  • Johnson JT, Petitigrew WT (2006) Effects of mepiquat pentaborate on cotton cultivars with different maturities. J Cotton Sci 10:128–135

    CAS  Google Scholar 

  • Kaur K, Gupta AK, Kaur N (2007) Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. Int J Biochem Biophys 44(4):223–230

    CAS  Google Scholar 

  • Kerby TA (1985) Cotton response to mepiquat chloride. Agron J 77:515–518

    CAS  Google Scholar 

  • Kiran KK, Patil B, Chetti M (2010) Effect of plant growth regulators on biophysical, biochemical parameters and yield of hybrid cotton. Karnataka J Agric Sci 16(4):591–594

    Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    CAS  PubMed  Google Scholar 

  • Landivar J, Marur C (1996) Photosynthesis and translocation of sugars in cotton plants subject to drought stress after mepiquat chloride applications. In: Austin

  • Li CR, Liang YH, Hew CS (2002) Responses of rubisco and sucrose-metabolizing enzymes to different CO2 in a C3 tropical epiphytic orchid Oncidium Goldiana. Plant Sci 163:313–320

    CAS  Google Scholar 

  • Li T, Ohsugi R, Yamagishi T, Sasaki H (2006) Effects of low light on rice sucrose content and sucrose degradation enzyme activities at grain-filling stage. Acta Agron Sin 32:943–945 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Logan J, Gwathmey CO (2002) Effects of weather on cotton responses to harvest-aid chemicals. J Cotton Sci 6:1–12

    CAS  Google Scholar 

  • Mao L, Zhang L, Evers JB, van der Werf W, Liu S, Zhang S, Wang B, Li Z (2015) Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density. Field Crops Res 179:63–71

    Google Scholar 

  • Mao L, Zhang L, Zhao X, Liu S, van der Werf W, Zhang S, Spiertz H, Li Z (2014) Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Res 155:67–76

    Google Scholar 

  • Martin LK, Haigler CH (2004) Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose 11:339–349

    CAS  Google Scholar 

  • Nagashima GT, Marur CJ, Yamaoka RS, Miglioranza É (2005) Development of cotton plant from seeds soaked with mepiquat chloride. Pesqui Agropecu Bras 40:943–946

    Google Scholar 

  • Nagashima GT, Miglioranza É, Marur CJ, Yamaoka RS, Silva JGDR (2010) Development of cotton in response to mode of application and doses of mepiquat chloride in seeds. Ciênc Rural 40:7–11

    CAS  Google Scholar 

  • Nagashima GT, Miglioranza É, Marur YRS, Gomes JC (2007) Soaking seeds and foliar application with mepiquat chloride on growth and yield of cotton plant. Ciênc Agrotec 31:1027–1034

    CAS  Google Scholar 

  • Nichols SP, Snipes CE, Jones MA (2003) Evaluation of row spacing and mepiquat chloride in cotton. J Cotton Sci 7:148–155

    CAS  Google Scholar 

  • Nuti RC, Viator RP, Casteel SN, Edmisten KL, Wells R (2006) Effect of planting date, mepiquat chloride, and glyphosate application to glyphosate-resistant cotton. Agron J 98:1627–1633

    Google Scholar 

  • Pan QH, Yu XC, Zhang N, Zou X, Peng CC, Wang XL, Zou KQ, Zhang DP (2006) Activity, but not expression, of soluble and cell wall-bound acid invertases is induced by abscisic acid in developing apple fruit. J Integ Plant Biol 48:536–549

    CAS  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pettigrew W, Johnson J (2005) Effects of different seeding rates and plant growth regulators on early-planted cotton. J Cotton Sci 9:189–198

    CAS  Google Scholar 

  • Pettigrew WT, Gerik TJ (2007) Cotton leaf photosynthesis and carbon metabolism. Adv Agron 94:209–236

    CAS  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from arabidopsis. Plant Physiol 108:1049–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qazi HA, Paranjpe S, Bhargava S (2012) Stem sugar accumulation in sweet sorghum–activity and expression of sucrose metabolizing enzymes and sucrose transporters. J Plant Physiol 169:605–613

    CAS  PubMed  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Biol 51:501–531

    CAS  Google Scholar 

  • Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34:845–872

    CAS  Google Scholar 

  • Reddy AR, Reddy K, Hodges H (1996) Mepiquat chloride (PIX)-induced changes in photosynthesis and growth of cotton. Plant Growth Regul 20:179–183

    CAS  Google Scholar 

  • Reddy K, Hodges H, McKinion J, Wall G (1992) Temperature effects on Pima cotton growth and development. Agron J 84:237–243

    Google Scholar 

  • Reddy V, Baker D, Hodges H (1990) Temperature and mepiquat chloride effects on cotton canopy architecture. Agron J 82:190–195

    CAS  Google Scholar 

  • Ren X, Zhang L, Du M, Evers JB, van der Werf W, Tian X, Li Z (2013) Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Res 149:1–10

    Google Scholar 

  • Rigon J, Beltrão N, Capuani S, Neto JB (2011) Initial growth of the castor bean soaked in mepiquat chloride and nitrogen topdressing fertilization. Revista Verde 6:28–33

    Google Scholar 

  • Rosolem CA, Oosterhuis DM, Souza FSD (2013) Cotton response to mepiquat chloride and temperature. Sci Agric 70:82–87

    CAS  Google Scholar 

  • Saleem MF, Kamal MA, Shahid M, Saleem A, Shakeel A, Shakeel AA (2020) Exogenous selenium-instigated physiochemical transformations impart terminal heat tolerance in Bt. cotton. J Soil Sci Plant Nutr 20:274–283

    CAS  Google Scholar 

  • Sawan Z, Hafez S, Basyony A (2001) Effect of nitrogen fertilization and foliar application of plant growth retardants and zinc on cottonseed, protein and oil yields and oil properties of cotton. J Agron Crop Sci 186:183–191

    CAS  Google Scholar 

  • Sawan ZM, Fahmy AH, Yousef SE (2009) Direct and residual effects of nitrogen fertilization, foliar application of potassium and plant growth retardant on Egyptian cotton growth, seed yield, seed viability and seedling vigor. Acta Ecol Sin 29:116–123

    Google Scholar 

  • Shu H, Zhou Z, Xu N, Wang Y, Zheng M (2009) Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. Eur J Agron 31:61–68

    CAS  Google Scholar 

  • Siebert JD, Stewart AM (2006) Influence of plant density on cotton response to mepiquat chloride application. Agron J 98:1634–1639

    Google Scholar 

  • Silverstone AL, Ciampaglio CN, Sun TP (1998) The arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza FSD, Rosolem CA (2007) Rainfall intensity and mepiquat chloride persistence in cotton. Sci Agric 64:125–130

    Google Scholar 

  • Srivastava LM (2002) Plant growth and development: hormones and environment. In: Srivastava, LM Academic press, New York, pp. 172–181

  • Stewart A (2005) Suggested guidelines for plant growth regulator use on Louisiana cotton Louisiana State Univ AgCenter Publ 2918

  • Stitt M (1989) Control analysis of photosynthetic sucrose synthesis: assignment of elasticity coefficients and flux-control coefficients to the cytosolic fructose 1, 6-bisphosphatase and sucrose phosphate synthase. Philosophical Transactions of the Royal Society, B: Biological Sciences 323(1216):327–338

    CAS  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    CAS  PubMed  Google Scholar 

  • Sun TP, Kamiya Y (1994) The arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6:1509–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci 96:4698–4703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Tan W, Li H, Wang B, He Z, Duan L (2006) The effects of mixture of DPC and DTA-6 on seedlings of insect-resistant transgenic cotton. Cotton Sci 18(1):3–7

    Google Scholar 

  • Tian XL, Xie XY, Zhou CJ, Yang PZ, Wang BM, Duan LS, Li SI, Yun YI, He ZP, Li ZH (2008) Factors affecting the degradation of mepiquat chloride in soil. JAES 5:009

    Google Scholar 

  • Tung SA, Huang Y, Ali S, Hafeez A, Shah AN, Ma X, Ahmad S, Chattha MS, Liu A, Liu J, Zhang Z, Yang G (2019) Mepiquat chloride effects on potassium acquisition and functional leaf physiology as well as lint yield in highly dense late-sown cotton. Indus Crops Prod 129:142–155

    CAS  Google Scholar 

  • Tung SA, Huang Y, Ali S, Hafeez A, Shah AN, Song X, Ma X, Luo D, Yang G (2018b) Mepiquat chloride application does not favor leaf photosynthesis and carbohydrate metabolism as well as lint yield in late-planted cotton at high density. Field Crops Res 221:108–118

    Google Scholar 

  • Tung SA, Huang Y, Hafeez A, Ali S, Khan A, Souliyanonh B, Song X, Liu A, Yang G (2018a) Mepiquat chloride effects on cotton yield and biomass accumulation under late sowing and high density. Field Crops Res 215:59–65

    Google Scholar 

  • USDA-United States Department of Agriculture (2020) Cotton: world markets and trades-USDA Foreign Agricultural Services, May 2020. pp. 1–30 https://apps.fas.usda.gov/psdonline/circulars/cotton.pdf

  • Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Ma CJ (2007) Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19:32–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Mu C, Du M, Chen Y, Tian X, Zhang M, Li Z (2014b) The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Sci 225:15–23

    CAS  PubMed  Google Scholar 

  • Wang L, Zhang M, Du M, Tian X, Li Z, Zhao H (2014a) GhCPS and GhKS encoding gibberellin biosynthesis enzymes involve in inhibition of leaf growth by mepiquat chloride in cotton (Gossypium hirsutum L.). Acta Agron Sin 40:1350–1355

    CAS  Google Scholar 

  • Waqas MA, Khan I, Akhter MJ, Noor MA, Ashraf U (2017) Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environ Sci Pollut Res 24:11459–11471

    CAS  Google Scholar 

  • Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DG, York AC, Edmisten KL (2007) Narrow row cotton response to mepiquat chloride. J Cotton Sci 11:177–185

    CAS  Google Scholar 

  • Wu Q, Du M, Wu J, Wang N, Wang B, Li F, Xiaoli T, Li Z (2019) Mepiquat chloride promotes cotton lateral root formation by modulating plant hormone homeostasis. BMC Plant Biol 19:573

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    CAS  PubMed  Google Scholar 

  • Yamaguchi S, Sun TP, Kawaide H, Kamiya Y (1998) The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116:1271–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, Seo M, Wagner D (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638–641

    CAS  PubMed  Google Scholar 

  • Yang F, Du M, Tian X, Eneji AE, Duan L, Li Z (2014) Plant growth regulation enhanced potassium uptake and use efficiency in cotton. Field Crops Res 163:109–118

    Google Scholar 

  • Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110:1029–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeates SJ, Constable GA, McCumstie T (2002) Developing management options for mepiquat chloride in tropical winter season cotton. Field Crops Res 74:217–230

    Google Scholar 

  • Yeates SJ, Constable GA, McCumstie T (2005) Cotton growth and yield after seed treatment with mepiquat chloride in the tropical winter season. Field Crops Res 93:122–131

    Google Scholar 

  • York AC (1983) Cotton cultivar response to mepiquat chloride. Agron J 75:663–667

    CAS  Google Scholar 

  • Zhang JW, Dong ST, Wang KJ, Hu CH, Liu P (2008) Effects of shading in field on key enzymes involved in starch synthesis of summer maize. Acta Agron Sin 34:1470–1474 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhao D, Oosterhuis D (1997) Physiological response of growth chamber-grown cotton plants to the plant growth regulator PGR-IV under water-deficit stress. Environ Exp Bot 38(1):7–14

    CAS  Google Scholar 

  • Zhao D, Oosterhuis DM (2000) Pix plus and mepiquat chloride effects on physiology, growth and yield of field-grown cotton. J Plant Growth Regul 19:415–422

    CAS  Google Scholar 

  • Zhao W, Du M, Xu D, Lu H, Tian X, Li Z (2017) Interactions of single mepiquat chloride application at different growth stages with climate, cultivar, and plant population for cotton yield. Crop Sci 57(3):1713–1724

    Google Scholar 

Download references

Acknowledgments

We are highly grateful to Rana Abdul Samad, Dr. Saddam Hussain, Dr. Muhammad Farooq, and Dr. Basharat Ali for their valuable suggestions and technical support for the improvement of manuscript.

Funding

This project was financially supported by the National Natural Science Foundation of China (31271665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tung, S.A., Huang, Y., Hafeez, A. et al. Morpho-physiological Effects and Molecular Mode of Action of Mepiquat Chloride Application in Cotton: A Review. J Soil Sci Plant Nutr 20, 2073–2086 (2020). https://doi.org/10.1007/s42729-020-00276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-020-00276-0

Keywords

Navigation