Skip to main content
Log in

A new stator voltage error-based MRAS model for field-oriented controlled induction motor speed estimation without using voltage transducers

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

A sensorless speed estimation method for performing the indirect field-oriented control (IFOC) of induction motors (IMs) is presented in the current research. The method uses the stator voltage as state variable but eliminates the voltage transducers. Traditional MRAS methods use two sets of equations to estimate the motor speed. However, the proposed system utilizes the q-axis current regulator proportional–integral (PI) control output \( \left( {V_{\text{sq}}^{*} } \right) \) in the reference model as a new Model Reference Adaptive System (MRAS) technique and compares this value with the estimated voltage \( \left( {\hat{V}_{\text{sq}} } \right) \) in an adaptive model. The method calculates the steady-state q-axis stator voltage in adaptive model, so, the calculation burden in the estimation loop is significantly reduced. Choosing the q-axis stator voltage as state variable removes requirement of the rotor parameters in calculations, and therefore, the system becomes resistant to the alteration in rotor parameters. Furthermore, the mentioned special calculation ensures the elimination of the need for flux estimation, so the speed estimation technique becomes resistant to integral and derivative calculation-based problems. The MATLAB/Simulink simulation results and experiments under various operation conditions verifies the effectiveness of the studied technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\( V_{\text{s}} \) :

Stator voltage

\( V_{\text{dc}} \) :

DC supply voltage

\( V_{\text{sd}} ,V_{\text{sq}} \) :

d and q-axis stator voltages

\( V_{\text{rd}} ,V_{\text{rq}} \) :

d and q-axis rotor voltages

\( \lambda_{\text{sd}} ,\lambda_{\text{sq}} \) :

d and q-axis stator fluxes

\( R_{\text{s}} ,R_{\text{r}} \) :

Stator and rotor resistances

\( L_{\text{s}} ,L_{\text{r}} \) :

Stator and rotor self-inductances

\( T_{\text{r}} = \frac{{L_{\text{r}} }}{{R_{\text{r}} }} \) :

Rotor time constant

\( \omega_{\text{r}} \) :

Rotor frequency

\( \omega_{\text{m}} \) :

Mechanical speed

\( P \) :

Number of poles

^:

Symbol indicating estimation

\( i_{\text{s}} \) :

Stator current

\( i_{\text{abc}} \) :

Phase currents

\( i_{\text{sd}} ,i_{\text{sq}} \) :

d and q-axis stator currents

\( i_{\text{rd}} ,i_{\text{rq}} \) :

d and q-axis rotor currents

\( \lambda_{\text{rd}} ,\lambda_{\text{rq}} \) :

d and q-axis rotor fluxes

\( L_{\text{ls}} ,L_{\text{lr}} \) :

Stator and rotor leakage inductances

\( L_{\text{m}} \) :

Mutual inductance

\( \sigma = 1 - \frac{{L_{\text{m}}^{2} }}{{L_{\text{r}} L_{\text{s}} }} \) :

Total leakage factor of the machine

\( \omega_{\text{s}} \) :

Stator electrical frequency

\( \omega_{\text{sl}} \) :

Slip frequency

\( f_{\text{s}} \) :

Switching frequency

*:

Symbol indicating the reference/command

References

  1. De Rubio JJ (2018) Robust feedback linearization for nonlinear processes control. ISA Trans. 74:155–164

    Article  Google Scholar 

  2. De Rubio JJ et al (2019) Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access 7:138244–138252

    Article  Google Scholar 

  3. Gao X, Sun B, Hu X, Zhu K (2020) Echo State network for extended state observer and sliding mode control of vehicle drive motor with unknown hysteresis nonlinearity. hindawi.com

  4. De Rubio JJ (2016) Hybrid controller with observer for the estimation and rejection of disturbances. ISA Trans 65:445–455

    Article  Google Scholar 

  5. Holtz J, Thimm T (1989) Identification of the machine parameters in a vector controlled induction motor drive. In: Conference record of the IEEE industry applications society annual meeting, pp 601–606

  6. Holtz J (1995) State of the art of controlled AC drives without speed sensor. In: Proceedings of 1995 international conference on power electronics and drive systems. PEDS 95, pp 1–6

  7. Holtz J (2006) Sensorless control of induction machines—with or without signal injection? IEEE Trans Ind Electron 53(1):7–30

    Article  Google Scholar 

  8. Syam P, Kumar R, Das S, Chattopadhyay AK (2015) Review on model reference adaptive system for sensorless vector control of induction motor drives. IET Electr Power Appl 9(7):496–511

    Article  Google Scholar 

  9. Landau I (1979) Adaptive control-the model reference approach. Marccl Dekker, New York

    MATH  Google Scholar 

  10. Schauder C (1992) Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Trans Ind Appl 28(5):1054–1061

    Article  Google Scholar 

  11. Shoudao H, Yaonan W, Jian G, Jiantao L, Sihai Q (xxxx) The vector control based on MRAS speed sensorless induction motor drive. In: Fifth world congress on intelligent control and automation (IEEE Cat. No.04EX788), pp 4550–4553

  12. Fang-Zheng P, Fukao T (1994) Robust speed identification for speed-sensorless vector control of induction motors. IEEE Trans Ind Appl 30(5):1234–1240

    Article  Google Scholar 

  13. Kojabadi HM (2009) Active power and MRAS based rotor resistance identification of an IM drive. Simul Model Pract Theory

  14. Maiti S, Chakraborty C, Hori Y, Ta MC (2008) Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power. IEEE Trans Ind Electron 55(2):594–601

    Article  Google Scholar 

  15. Cao-Minh T, Uchida T, Hori Y (xxxx) MRAS-based speed sensorless control for induction motor drives using instantaneous reactive power. In: IECON’01. 27th annual conference of the IEEE industrial electronics society (Cat. No. 37243), vol 2, pp 1417–1422

  16. Peng F, Fukao T, Lai J (1994) Low-speed performance of robust speed identification using instantaneous reactive power for tacholess vector control of induction motors. Ind Appl Soc Annu

  17. Rowan TM, Kerkman RJ, Leggate D (1991) A simple on-line adaption for indirect field orientation of an induction machine. IEEE Trans Ind Appl 27(4):720–727

    Article  Google Scholar 

  18. Dybkowski M, Orlowska-Kowalska T (2008) Application of the stator current-based MRAS speed estimator in the sensorless induction motor drive. In: 2008 13th international power electronics and motion control conference, pp 2306–2311

  19. Dehghan-Azad E, Gadoue S, Atkinson D, Slater H, Barrass P, Blaabjerg F (2018) Sensorless control of IM based on stator-voltage MRAS for limp-home EV applications. IEEE Trans Power Electron 33(3):1911–1921

    Article  Google Scholar 

  20. MRAS based speed estimation of induction motor drive utilizing machine’s d- and q- circuit impedances. IEEE Trans Ind Electron, pp 1–1

  21. Landau YD (1984) Adaptive control: the model reference approach. IEEE Trans Syst Man Cybern 14(1):169–170

    Article  Google Scholar 

  22. Soltani J, Mizaeian B (1998) Simultaneous speed and rotor time constant identification of an induction motor drive based on the model reference adaptive system combined with a fuzzy resistance estimator. In: 1998 international conference on power electronic drives and energy systems for industrial growth. Proceedings, vol 2, pp 739–744

  23. Pal A, Das S, Chattopadhyay AK (2018) An improved rotor flux space vector based MRAS for field-oriented control of induction motor drives. IEEE Trans Power Electron 33(6):5131–5141

    Article  Google Scholar 

  24. Tamai S, Sugimoto H, Yano M (1985) Speed sensorless vector control of induction motor applied model reference adaptive system. In: Proceedings IEEE/IA annual migration conference

  25. Marwali M, Keyhani A (1997) A comparative study of rotor flux based MRAS and back EMF based MRAS speed estimators for speed sensorless vector control of induction machines. In: Second IAS Annual Meetion IAS’97

  26. Nitayotan C, Sangwongwanich S (2001) A filtered back EMF based speed-sensorless induction motor drive. In: Conference record of the 2001 IEEE industry applications conference. 36th IAS Annual Meeting (Cat. No.01CH37248), vol 2, pp 1224–1231

  27. Chao KH, Liaw CM (2000) Speed sensorless control performance improvement of induction motor drive using uncertainty cancellation. IEE Proc Electr Power Appl 147(4):251

    Article  Google Scholar 

  28. Zbede Y, Gadoue S, Atkinson D (2016) Model predictive MRAS estimator for sensorless induction motor drives. IEEE Trans Ind Electron 99:1–1

    Google Scholar 

  29. Gadoue SM, Giaouris D, Finch JW (2011) An experimental assessment of a stator current MRAS based on neural networks for sensorless control of induction machines. In: 2011 symposium on sensorless control for electrical drives, pp 102–106

  30. Shyh-Shing P, Yen-Shin L, Chang-Huan L (1998) Sensorless vector controller for induction motor drives with parameter identification. In: IECON’98. Proceedings of the 24th annual conference of the IEEE industrial electronics society (Cat. No. 98CH36200), vol 2, pp 1008–1013

  31. Perng S, Lai Y, Liu C (1998) Sensorless vector controller for induction motor drives with parameter identification. In: IECON’98. Proc 24th

  32. Bin H, Wenlong Q, Haifeng L (2004) A novel on-line rotor resistance estimation method for vector controlled induction motor drive. Power Electron Motion

  33. Dehbozorgi MR, Kojabadi HM, Vahedi H, Al-Haddad K (2012) A comparative study of various MRAS-based IM’s rotor resistance adaptation methods. In: IECON 2012-38th annual conference on IEEE industrial electronics society, pp 4070–4075

  34. Chakraborty C, Teja A (2010) A new V × I based adaptive speed sensorless four quadrant vector controlled induction motor drive. Power Electron

  35. Teja AVR, Chakraborty C, Maiti S, Hori Y (2012) A new model reference adaptive controller for four quadrant vector controlled induction motor drives. IEEE Trans Ind Electron 59(10):3757–3767

    Article  Google Scholar 

  36. Basak S, Teja AVR, Chakraborty C, Hori Y (2013) A new model reference adaptive formulation to estimate stator resistance in field oriented induction motor drive. In: IECON 2013—39th annual conference of the IEEE industrial electronics society, pp 8470–8475

  37. Lai J-S et al (2014) A hybrid-switch-based soft-switching inverter for ultrahigh-efficiency traction motor drives. IEEE Trans Ind Appl 50(3):1966–1973

    Article  Google Scholar 

  38. Verma V, Chakraborty C, Maiti S, Hori Y (2013) Speed sensorless vector controlled induction motor drive using single current sensor. IEEE Trans Energy Convers 28(4):938–950

    Article  Google Scholar 

  39. Ozdemir S, Sozer Y, Umurkan N (2017) Voltage error phase locked loop (PLL) based model adaptive sensorless vector control algorithm for induction motors. In: 2017 IEEE applied power electronics conference and exposition (APEC), pp 1914–1920

  40. Park RH (1929) Two-reaction theory of synchronous machines: generalized method of analysis-part I. Trans Am Inst Electr Eng 48(3):716–727

    Article  Google Scholar 

  41. Stanley HC (2013) An analysis of the induction machine. Electr Eng 57(12):751–757

    Article  Google Scholar 

  42. Kron G (1951) Equivalent circuits of electric machinery

  43. Brereton DS, Lewis DG, Young CC (1957) Representation of induction-motor loads during power-system stability studies. Trans Am Inst Electr Eng Part III Power Appar Syst 76(3):451

    Google Scholar 

  44. Krause PC, Thomas CH (1965) Simulation of symmetrical induction machinery. IEEE Trans Power Appar Syst 84(11):1038–1053

    Article  Google Scholar 

  45. Krause PC (2002) Analysis of electric machinery

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadık Özdemir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, S. A new stator voltage error-based MRAS model for field-oriented controlled induction motor speed estimation without using voltage transducers. Electr Eng 102, 2465–2479 (2020). https://doi.org/10.1007/s00202-020-01043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01043-1

Keywords

Navigation