Skip to main content

Advertisement

Log in

The paleodepositional environment, diagenetic and depositional conditions of the Middle-Late Miocene Koluz gypsum member (NE Van, Eastern Turkey)

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

This study investigates the depositional setting and diagenetic processes of gypsiferous sediments known as the Koluz gypsum member located in the northeast of Van (Eastern Anatolia-Turkey). The commencement of still-active contractional regime due to the collision of Eurasian and Arabian plates gave way to uplift events on the active Eurasian margin. This uplift initially resulted in termination of marine sedimentation and commencement of continental deposition in the region. The Middle-Late Miocene Kurtdeliği formation is one of the oldest products of the continental setting in the Eastern Anatolia. Sedimentologic and petrographic analyses conducted on the Koluz gypsum member of the formation, the main concern of this study, indicate that the member is represented by secondary gypsum (massive, laminated, nodular, satin spar) and primary gypsum lithofacies (selenite, gypsum arenite, discoidal and radial). The secondary gypsum facies are formed after hydration of anhydrite and anhydritizated primary gypsums. Additionally, mineralogical and geochemical studies suggest that carbonate (dolomite and calcite) and detrital materials found within the member formed during the deposition or late diagenetic processes. The high major and trace element values determined by XRF analyses also indicate intense detrital influx and accordingly terrestrial origin for the basin. Sedimentary textures and lithofacies of the member show a typical ephemeral playa complex, which was likely fed by both evaporation and groundwater discharge. Tectonism, climate, salinity variation, biologic activity and diagenetic and hydrothermal fluids play major roles in the formation and transformation of these sediments to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acarlar M, Bilgin ZA, Erkalın T, Güner E, Şen AM, Umut M, Elibol E, Gedik İ, Hakyemez Y, Uğuz MF (1991) Van Gölü doğu ve kuzeyinin jeolojisi, MTA

  • Açlan M, Altun Y (2018) Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates. J Afr Earth Sci 142:1–11

    Google Scholar 

  • Açlan M, Duruk Hİ (2018) Geochemistry, zircon U-Pb geochronology, and tectonic setting of the Taşlıçay Granitoids, Eastern Anatolia, Turkey. Arab J Geosci 11:336

    Google Scholar 

  • Adamia S, Zakariadze G, Chkhotua T, Sadradze N, Tsereteli N, Chabukiani A, Gventsadze A (2011) Geology of the Caucasus: a review. Turk J Earth Sci 20:489–544

    Google Scholar 

  • Adatte T, Keller G, Stinnesbeck W (2002) Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record. Palaeogeogr Palaeoclimatol Palaeoecol 178:165–196

    Google Scholar 

  • Aigner T, Bachmann GH (1989) Dynamic stratigraphy of an evaporite-to-red bed sequence, Gipskeuper (Triassic), southwest German Basin. Sed Geol 62:5–25

    Google Scholar 

  • Aksoy E (1988) Van İli Doğu-Kuzey Doğu Yöresinin Stratigrafisi ve Tektoniği, University of Fırat

  • Allen CR (1969) Active faulting in northern Turkey. Division of Geological Sciences, California Institute of Technology, Boulevard

    Google Scholar 

  • Altınlı IE (1966) Geology of eastern and southeastern Anatolia. Bull Min Res Explor Inst Turk 66:35–76

    Google Scholar 

  • Andreeva P (2010) Early diagenetic structures in Middle Devonian (Givetian) sabkha evaporites from the Moesian Platform (Northeastern Bulgaria). Geosciences 1113:89–90

    Google Scholar 

  • Aref M, Attiia O, Wali A (1997) Facies and depositional environment of the Holocene evaporites in the Ras Shukeir area, gulf of Suez. Egypt Sediment Geol 110:123–145

    Google Scholar 

  • Arpat E, Şaroğlu F (1972) Doğu Anadolu Fayı ile ilgili bazı gözlemler. MTA Bull 78:44–50

    Google Scholar 

  • ASTM (1972) Inorganic index to the powder diffraction file. Joint Committee on Powder Diffraction Standarts, Pennsylvania

    Google Scholar 

  • Ateş Ş, Mutlu G, Özerk OC, Çiçek İ, Gülmez FA (2007) Van İli Kentleşme Alanları Yer Bilim Verileri, MTA

  • Babel M (2004) Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol Pol 54:219–249

    Google Scholar 

  • Bouroullec J (1979) Etude sequentielle du toit de la serie evaporitique du Lias inferiur dans un puits du bassin Aquitain, France du sud-Quest. Dans: “Depots evaporitiques”. Editions Technip 86:29–31

    Google Scholar 

  • Brindley, GW, Brown G (1980) X-ray diffraction procedures for clay mineral ıdentification. In: Brindley GW and Brown G (eds) Mineralogical Society, London, pp 305–356

  • Bozkurt E (2001) Neotectonics of Turkey – a synthesis. Geodin Acta 14(1–3):3–30

    Google Scholar 

  • Brown G (1961) The X-ray identification and crystal structures of clay minerals. Jarrold and Sons Ltd., Norwich

    Google Scholar 

  • Butler GP (1969) Modern evaporate deposition and geochemistry of coexisting brines, the Sabkha, Trucial Coast, Arabian Gulf. J Sediment Petrol 39:70–89

    Google Scholar 

  • Butler GP (1973) Strontium geochemistry of modern and ancient calcium sulphate minerals. In: Purser BH (ed) The Persian Gulf. Springer, Berlin, pp 423–452

    Google Scholar 

  • Clark M, Robertson A (2005) Uppermost Cretaceous-Lower Tertiary Ulukisla Basin, south-central Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sed Geol 173:15–51

    Google Scholar 

  • Cody RD, Cody AM (1988) Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J Sediment Petrol 58:247–255

    Google Scholar 

  • Demirtaşlı E, Pisoni C (1965) Geology of Ahlat-Adicevaz region (North of Van Lake). MTA Bull 64:22–36

    Google Scholar 

  • Dewey JF, Hempton MR, Kidd WSF, Şaroglu F, Şengor AMC (1986) Shortening of continental lithosphere: the neotectonics of Eastern Anatoliada young collision zone. In: Coward MP, Riea AC (eds) Collision Tectonics. Geological Society of London, Special Publication, pp 3–36

    Google Scholar 

  • Eugster HP (1984) Geochemistry and sedimentology of marine and nonmarine evaporites. Eclogae geol Helv 77:237–248

    Google Scholar 

  • Foley EJ (1938) Geology of the Van Area, MTA

  • Gaillardet J, Viers J, Dupré B (2014) Trace elements in river waters. Treat Geochem 5:225–272

    Google Scholar 

  • Görür N, Tüysüz O, Şengör MC (1998) Tectonic evolution of the Central Anatolian basins. Int Gelol Rev 40:831–850

    Google Scholar 

  • Görür N, Şengör AMC, Stephanie D, Louis G (2015) Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: results from systematic, shipborne multibeam echo sounder water column imaging. J Geophys Res Solid Earth 120:2891–2912

    Google Scholar 

  • Guo P, Chiyang L, Peng W, Ke W, Haili Y, Bei Li (2017) Geochemical behavior of rare elements in Paleogene saline lake sediments of the Qaidam Basin, NE Tibetan Plateau. Carb Evap. https://doi.org/10.1007/s13146–017–0394

  • Gündoğan İ, Önal M, Depçi T (2005) Sedimentology, petrography and diagenesis of Eocene-Oligocene evaporites: the Tuzhisar Formation, SW Sivas Basin, Turkey. J Asian Earth Sci 25:791–803

    Google Scholar 

  • Gündoğdu N (1982) Geological-Mineralogical and Geochemical Investigation of Neogene-Bigadiç Sedimentary Basin, University of Hacettepe

  • Gülyüz E, Durak H, Özkaptan M, Krijgsmanc W (2020) Paleomagnetic constraints on the early Miocene closure of the southern NeoTethys (Van region; East Anatolia): Inferences for the timing of Eurasia-Arabia collision. Global and Planetary Change 185

  • Güngör Yeşilova P, Yeşilova Ç, Çiftçi, Y (2006a) Koluz üyesi (Ermişler güneyi) stratigrafisi ve sedimantolojisi. SÜ 3. Yıl Fikret Kurtman Jeoloji Sempozyumu, Selçuk Üniversitesi, Konya, pp 230–231

  • Güngör Yeşilova P, Yeşilova Ç, Çiftçi, Y (2006b) Timar bölgesindeki (Van Gölü Doğusu) jipslerin oluşumuna ön yaklaşım. 59. Türkiye Jeoloji Kurultayı, Ankara, pp 216–217

  • Gürer ÖF, Gürer A (1999) Development of evaporites and the counterclockwise rotation of Anatolia, Turkey. Int Geol Rev 41:607–622

    Google Scholar 

  • Handford CR (1982) Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin-Bristol Dry Lake, California. Sedimentology 29:239–253

    Google Scholar 

  • Hardie LA, Eugster HP (1971) The depositional environment of marine evaporites: a case for shallow, clastic accumulation. Sedimentology 16:187–220

    Google Scholar 

  • Hardie LA, Smooth JP, Eugster HP (1978) Saline Lakes and their deposits. Sedim. Approac Spec Pub Int Ass Sediment 2:7–41

    Google Scholar 

  • Hardie LA (1984) Evaporites: Marine or non-marine. Amer Jour Scien 284:193–240

    Google Scholar 

  • Hisarlı ZM, Çinku MC, Ustaömer T, Keskin M, Orbay N (2016) Neotectonic deformation in the Eurasia-Arabia collision zone, the East Anatolian Plateau, E Turkey: evidence from palaeomagnetic study of Neogene-Quaternary volcanic rocks. Int J Earth Sci 105:139–165

    Google Scholar 

  • Hüsing SK, Zachariasse W-J, van Hinsbergen DJ, Krijgsman W, Inceoz M, Harzhauser M, Mandic O, Kroh A (2009) Oligocene-Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway. Geol Soc Lond Spec Publ 311:107–132

    Google Scholar 

  • Ingles M, Anadon P (1991) Relationship of clay minerals to depositional environment in the non-marine Eocene Pontils Group, SE Ebro basin (Spain). J Sediment Petrol 61:926–939

    Google Scholar 

  • Innocenti F, Mazzuoli R, Pasquare G, Radicati di Brozolo F, Villari L (1976) Evolution of volcanism in the area of interaction between the Arabian, Anatolian and Iranian plates lake van, eastern Turkey. J Volcanol Geoth Res 1:103–112

    Google Scholar 

  • Kantorowicz JD (1984) Clastic diagenesis. Geol Soc Lond Spec Publ 18:189–226

    Google Scholar 

  • Karaoğlan F, Parlak O, Hejl E, Neubauer F, Klötzli U (2016) The temporal evolution of the active margin along the Sooutheast Anatolian orogenic belt (SE Turkey): evidence from U-PB, Ar–Ar and fission track chronology. Gondwana Res 33:190–208

    Google Scholar 

  • Kasprzyk A (2003) Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland. Sed Geol 158:167–194

    Google Scholar 

  • Kendall AC (1984) Facies Models. In: Walker RG (ed) Evaporites, 2nd edn. Geoscience, Canada, pp 259–296

    Google Scholar 

  • Keskin M, Pearce JA, Mitchell JG (1998) Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars Plateau, northeastern Turkey. J Volcanol Geotherm Res. https://doi.org/10.1016/S0377-0273(98)00063-8

    Article  Google Scholar 

  • Kıraner F (1959) Van Gölü Doğu Bölgesinin Jeolojik etüdü. Tür Jeol Kur Bült 7:30–58

    Google Scholar 

  • Koçyiğit A, Yilmaz A, Adamia S, Kuloshvili S (2001) Neotectonics of east anatolian plateau (Turkey) and lesser caucasus: Implication for transition from thrusting to strike-slip faulting. Geodin Acta. https://doi.org/10.1080/09853111.2001.11432443

    Article  Google Scholar 

  • Koçyiğit A (2013) New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau. E. Turkey. J. Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2012.11.008

  • Kurtman F, Akkuş AF, Gedik A (1978) The geology and oil potential of he Muş-Van region. The Geology of Lake Van: MTA Yayınları 169:124–133

    Google Scholar 

  • Kushnir J (1982) The composition and origin of brines during the Messinian desiccation event in the Mediterrnnean basin as deduced from concentrations of ions coprccipitated with gypsum and anhydrite. Chern Geol 35:333–350

    Google Scholar 

  • Leeuw A, Bukowski K, Krijgsman W, Kuiper KF (2010) Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology 38:715–718

    Google Scholar 

  • Levy Y (1980) Evaporitic environments in northern Sinai. In: Nissenbaum A (ed) Hypersaline brines and evaporitic environments. Development in Sedimentology, Amsterdam, pp 131–143

    Google Scholar 

  • Last MW, Vance R (1997) Bedding characteristics of Holocene sediments from salt lakes of the northern Great Plains, Western Canada. J Paleolimnol 17:297–318

    Google Scholar 

  • Magee JW (1991) Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southeastern Australia. J Geol 73:603–618

    Google Scholar 

  • Norrish K, Chappel BW (1977) X-ray fluorescence spectrometry. In: Zussman J (ed) Physical methods in determinative mineralogy. Academic Press, Londan, pp 201–272

    Google Scholar 

  • Okay Aİ, Zattin M, Cavazza W (2010) Apatite fission-track data for the Miocene ArabiaEurasia collision. Geology 38:35–38

    Google Scholar 

  • Oyan V, Keskin M, Lebedev VA, Chugaev AV, Sharkov EV, Ünal E (2017) Petrology and geochemistry of the Quaternary mafic volcanism in the northeast of Lake Van, Eastern Anatolian collision zone, Turkey. J Petrol 58:1701–1728

    Google Scholar 

  • Oyan V (2018) Ar-Ar dating and petrogenesis of the Early Miocene Taşkapı-Mecitli (Erciş-Van) granitoid, Eastern Anatolia Collisional Zone, Turkey. J Asian Earth Sci 158:210–226

    Google Scholar 

  • Peryt TM (2006) The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys. Sedimentary Geology 379–396

  • Rahimpour-Bonab H (2007) A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity. J Pet Sci Eng 58:1–12

    Google Scholar 

  • Rouchy JM (1976) Sur la get&e de deux principaux types de gypse (finement 1itc et en chevrons) du Miocene terminal de Sicile et d’Espagne miridionale. Rev Geogr Phys Geol Dyn 18:347–364

    Google Scholar 

  • Rögl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpath 50:339–349

    Google Scholar 

  • Sarp G (2014) Evolution of neotectonic activity of East Anatolian Fault System (EAFS) in Bingöl pull-apart basin, based on fractal dimension and morphometric indices. J Asian Earth Sci 88:168–177

    Google Scholar 

  • Schreiber BC, Freidman GM, Decima A, Schreiber E (1976) Depositional environments of Upper Miocene (Messinien) evaporite deposites of the Silician Basin. Sedimentology 23:729–760

    Google Scholar 

  • Shearman DJ (1966) Origin of marine evaporites by diagenesis. Trans Inst Min Metal 75:208–215

    Google Scholar 

  • Shearman DJ, Mossop GD, Dunsmore H, Martin M (1972) Origin of gypsum veins by hydrolic fracture. Inst Min Metall Trans 81:149–155

    Google Scholar 

  • Shearman DJ, Orti F (1976) Upper Miocene gypsum: San Miguel de Salinas, S.E, Spain. Mem Soc Geol Ital 16:327–339

    Google Scholar 

  • Smoot JP, Lowenstein TK (1991) Depositional environments of nonmarine evaporites. Evaporites, Petroleum and Mineral Resources (Ed: JL Melvin). Dev Sedimentol 50:189–347

    Google Scholar 

  • Şaroğlu F, Yılmaz Y (1986) Geological evolution and basin models during the neotectonic episode in eastern Anatolia. MTA Bull 107:61–83

    Google Scholar 

  • Şengör AMC (1979) The North Anatolian transform fault: its age, offset and tectonic significance. J Geol Soc Lond 136:269–282

    Google Scholar 

  • Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Google Scholar 

  • Şengör AMC, Kidd WSF (1979) Post-collisional tectonics of the Turkish Iranian Plateau and a comparison with Tibet. Tectonophysics 55:361–376

    Google Scholar 

  • Şengör AMC (1980) Türkiye’nin neotektoniğinin esasları. Tür. Jeol. Kur, Yayınları, Turkey

    Google Scholar 

  • Şengor AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Google Scholar 

  • Şengör AMC, Özeren S, Genç T, Zor E (2003) East Anatolian high plateau as a mantlesupported, north-south shortened domal structure. Geophys Res Lett 30:1–4

    Google Scholar 

  • Şengör AMC, Özeren MS, Keskin M, Sakınç M, Özbakır AD, Kayan I (2008) Eastern Turkish high plateau as a small Turkic–type orogen: implications for post-collisional crust-forming processes in Turkic-type orogens. Earth Sci Rev 90:1–48

    Google Scholar 

  • Ternek Z (1953) Van Gölü güneydoğu bölgesinin jeolojisi. Tür Jeol Kur Bült 4:1–27

    Google Scholar 

  • Testa G, Lugli S (2000) Gypsum anhydrite transformation in messinion evaporites of central Tuscany (Italy). Sediment Geol 130:249–268

    Google Scholar 

  • Thomas WA (1983) Continental margins, orogenic belts, and intracratonic structures. Geology 11:270–272

    Google Scholar 

  • Varol B, Şen S, Ayyıldız T, Sözeri K, Karakaş Z, Metais G (2015) Sedimentology and Stratigraphy of Cenozoic Deposits in the Kağızman-Tuzluca Basin, Northeastern Turkey. International J Earth Sci. https://doi.org/10.1007/s00531-015-1201-3.1-31

  • Vincent SJ, Morton AC, Carter A, Gibbs S, Barabadze TG (2007) Oligocene uplift of the Western Greater Caucasus: an effect of initial Arabia-Eurasia collision. Terra Nova 19:160–166

    Google Scholar 

  • Yeşilova, Ç, Yakupoğlu T, Güngör Yeşilova P, Aygün Ö (2006) Van Gölü KB-GD Kesimlerinin Senozoyik Stratigrafisi. 30. Yıl Fikret Kurtman Jeoloji Sempozyumu Bildiri Özleri Kitabı 223–224

  • Yılmaz Y (1993) New evidence and model on the evolution of the Southeast Anatolian Orogen. Geol Soc Am Bull 105:251–271

    Google Scholar 

  • Warren JK (1991) Sulfate dominated sea-marginal and platform evaporitive settings: Sabkhas and salinas, mudflats and salterns. In: Evaporites, Petroleum and Mineral Resourches. Developments in Sedimentology 50: 69–187

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin

    Google Scholar 

  • Zheng H, Liu C (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442

    Google Scholar 

Download references

Acknowledgments

This study was supported by Yüzüncü Yıl University Scientific Research Project Council (YYÜ, BAP, Project No: 2015-FBE–YL191). We are grateful to İbrahim Gündoğan (Dokuz Eylül University) for his assisting to the petrographic thin sections, X-Ray Diffraction and Scanning Electron Microskopy analyses. We also thank to Çetin Yeşilova for his help during field studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pelin Güngör Yeşilova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güngör Yeşilova, P., Gökmen, D. The paleodepositional environment, diagenetic and depositional conditions of the Middle-Late Miocene Koluz gypsum member (NE Van, Eastern Turkey). Carbonates Evaporites 35, 76 (2020). https://doi.org/10.1007/s13146-020-00614-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00614-4

Keywords

Navigation