Skip to main content
Log in

Functional Characterization of NgnL, an Alpha/beta-hydrolase Enzyme Involved in Biosynthesis of Acetylated Nodusmicin

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Nodusmicin and 18-O-acetyl-nodusmicin were isolated as a co-metabolite of nargenicin from Nocardia sp. CS682. NgnL belonging to the α/β-hydrolase superfamily was heterologously expressed in Escherichia coli BL21 and was evaluated for its potential for acetylation of nodusmicin by in-vitro reactions. The generation of 18-O-acetyl nodusmicin was confirmed by high resolution-quadruple time of flight mass spectrometry (HR-QTOF-MS). Thus, it was concluded that NgnL can perform regiospecific acetylation of nodusmicin at 18-OH in presence of acetyl-CoA as an acetate donor. The enzyme kinetic parameters as Km and Vmax of the enzymes were also evaluated. Further, the biosynthetic role of the enzyme for acetylation of nodusmicin was confirmed by gene inactivation and complementation studies. Hence, from this study, it was established that NgnL is regiospecific acetyltransferase involved in the biosynthesis of 18-O-acetyl nodusmicin in Nocardia sp. CS682.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dhakal, D., V. Rayamajhi, R. Mishra, and I. K. Sohng (2019) Bioactive molecules from Nocardia: diversity, bioactivities and biosynthesis. J. Ind. Microbiol. Biotechnol. 46: 385–407.

    Article  CAS  Google Scholar 

  2. Snyder, W. C. and K. L. Rinehart Jr (1984) Biosynthesis of nargenicin and nodusmicin. J. Am. Chem. Soc. 106: 787–789.

    Article  CAS  Google Scholar 

  3. Zhang, B., K. B. Wang, W. Wang, X. Wang, F. Liu, I. Zhu, I. Shi, L. Y. Li, H. Han, K. Xu, H. Y. Qiao, X. Zhang, R. H. Jiao, K. N. Houk, Y. Liang, R. X. Tan, and H. M. Ge (2019) Enzyme-catalysed [6+4] cycloadditions in the biosynthesis of natural products. Nature. 568: 122–126.

    Article  CAS  Google Scholar 

  4. Gössinger, E., M. Graupe, C. Kratky, and K. Zimmermann (1997) Approach towards an EPC synthesis of nodusmicin-III. Preparation of the oxygen bridged decalin part of nodusmicin. Tetrahedron. 53: 3083–3100.

    Article  Google Scholar 

  5. Jiang, L. M., S. P. Nie, D. F. Huang, Z. H. Fu, and M. Y. Xie (2018) Acetylation modification improves immunoregulatory effect of polysaccharide from seeds of Plantago asiatica L. J. Chem. 2018: 3082026.

    Google Scholar 

  6. Sisilia, F. Y., R. Herla, J. Elisa, S. D. R. Tampubolon, and S. D. Restuana (2018) Physicochemical characteristics of tuber modified by acetylation method and its application in dry noodle product. IOP Conf. Ser: Earth Environ. Sci. 205: 012044.

    Article  Google Scholar 

  7. Shinohara, Y., S. Takahashi, H. Osada, and Y. Koyama (2016) Identification of a novel sesquiterpene biosynthetic machinery involved in astellolide biosynthesis. Sci. Rep. 6: 32865.

    Article  CAS  Google Scholar 

  8. Suzuki, H., Y. Ohnishi, and S. Horinouchi (2007) Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus.J. Bacteriol. 189: 2155–2159.

    Article  CAS  Google Scholar 

  9. Wada, S. I., R. Sawa, F. Iwanami, M. Nagayoshi, Y. Kubota, K. Iijima, C. Hayashi, Y. Shibuya, M. Hatano, M. Igarashi, and M. Kawada (2017) Structures and biological activities of novel 4’-acetylated analogs of chrysomycins A and B. J. Antibiot. 70: 1078–1082.

    Article  CAS  Google Scholar 

  10. Seipke, R. E., I. Barke, C. Brearley, L. Hill, D. W. Yu, and R. I. M. Goss, M. I. Hutchings (2011) A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus.PLoS One. 6: e22028.

    Article  CAS  Google Scholar 

  11. Chatterjee, S., A. Sharma, and S. Chattopadhyay (2014) Chemo-enzymatic synthesis of the macrolide antibiotic (-)-A26771B. RSC Adv. 4: 42697–42705.

    Article  CAS  Google Scholar 

  12. Omoto, S., K. Iwamatsu, S. Inouye, and T. Niida (1976) Modifications of a macrolide antibiotic midecamycin (SF-837). I. Synthesis and Structure of 9,3“-diacetylmidecamycin. J. Antibiot. 29: 536–548.

    Article  CAS  Google Scholar 

  13. Habibi, D., P. Rahmani, and Z. Akbaripanah (2013) Acetylation of phenols, anilines, and thiols using silica sulfuric acid under solvent-free conditions. J. Chem. 2013: 268654.

    Google Scholar 

  14. Dhakal, D. and I. K. Sohng (2017) Coalition of biology and chemistry for ameliorating antimicrobial drug discovery. Front Microbiol. 8: 734.

    Article  Google Scholar 

  15. Holmquist, M. (2000) Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept. Sci. 1: 209–235.

    Article  CAS  Google Scholar 

  16. Bergfeld, A. K., H. Claus, N. K. Lorenzen, F. Spielmann, U. Vogel, and M. Muhlenhoff (2009) The polysialic acid-specific O-acetyltransferase OatC from Neisseria meningitidis serogroup C evolved apart from other bacterial sialate O-acetyltransferases. J. Biol. Chem. 284: 6–16.

    Article  CAS  Google Scholar 

  17. Tolzer, C., S. Pal, H. Watzlawick, J. Altenbuchner, and K. Niefind (2016) A novel esterase subfamily with α/β-hydrolase fold suggested by structures of two bacterial enzymes homologous to 1-homoserine O-acetyl transferases. FEBS Lett. 590: 174–184.

    Article  Google Scholar 

  18. Dhakal, D., V. Rayamajhi, H. T. Nguyen, P. B. Poudel, and J. K. Sohng (2019) Complete genome sequence of Nocardia sp. strain CS682, a producer of antibacterial compound Nargenicin A1. Microbiol Resour Announc. 8: e01098–19.

    PubMed  PubMed Central  Google Scholar 

  19. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  CAS  Google Scholar 

  20. Kumar, C. V., J. J. R. Coque, and J. F. Martin (1994) Efficient transformation of the cephamycin C producer Nocardia lactamdurans and development of shuttle and promoter-probe cloning vectors. Appl. Environ. Microbiol. 60: 4086–4093.

    Article  CAS  Google Scholar 

  21. Dhakal, D., A. K. Chaudhary, J. S. Yi, A. R. Pokhrel, B. Shrestha, P. Parajuli, A. Shrestha, T. Yamaguchi, H. J. Jung, S. Y. Kim, B. G. Kim, and J. K. Sohng (2016) Enhanced production of nargenicin Al and creation of a novel derivative using a synthetic biology platform. Appl. Microbiol. Biotechnol. 100: 9917–9931.

    Article  CAS  Google Scholar 

  22. Dhakal, D. and J. K. Sohng (2015) Laboratory maintenance of Nocardia species. Curr. Protoc. Microbiol. 39: 10F.1.1–10F.1.8.

    Article  Google Scholar 

  23. Dhakal, D., A. K. Jha, A. Pokhrel, A. Shrestha, and J. K. Sohng (2016) Genetic manipulation of Nocardia species. Curr. Protoc. Microbiol. 40: 10F.2.1–10F.2.18

    Article  Google Scholar 

  24. Mishra, R., D. Dhakal, J. M. Han, H. N. Lim, H. J. Jung, T. Yamaguchi, and J. K. Sohng (2019) Production of a novel tetrahydroxynaphthalene (THN) derivative from Nocardia sp. CS682 by metabolic engineering and its bioactivities. Molecules. 24: 244.

    Article  Google Scholar 

  25. Leslie, A. G. (1990) Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 Å resolution. J. Mol. Biol. 213: 167–186.

    Article  CAS  Google Scholar 

  26. Mosa, A., M. C. Hutter, J. Zapp, R. Bernhardt, and F. Hannemann (2015) Regioselective acetylation of C21 hydroxysteroids by the bacterial chloramphenicol acetyltransferase I. ChemBioChem 16: 1670–1679.

    Article  CAS  Google Scholar 

  27. Tanikawa, T., T. Asaka, M. Kashimura, Y. Misawa, K. Suzuki, M. Sato, K. Kameo, S. Morimoto, and A. Nishida (2001) Synthesis and antibacterial activity of acylides (3-O-acyl-erythromycin derivatives): a novel class of macrolide antibiotics. J. Med. Chem. 44: 4027–4030.

    Article  CAS  Google Scholar 

  28. Sohng, J. K., T. Yamaguchi, C. N. Seong, K. S. Baik, S. C. Park, H. J. Lee, S. Y. Jang, J. R. Simkhada, and J. C. Yoo (2008) Production, isolation and biological activity of nargenicin from Nocardia sp. CS682. Arch. Pharm. Res. 31: 1339–1345.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2A2A05000939, JKS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Ethics declarations

Conflict of Interest: All the authors read the manuscript and agreed on the contents of manuscript. All authors declare that they have no conflict of interest.

Ethical Approval: This article does not include any studies with human participants or animals models.

Informed Consent: Informed consent was obtained from all individual participant researchers represented in the study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayamajhi, V., Dhakal, D. & Sohng, J.K. Functional Characterization of NgnL, an Alpha/beta-hydrolase Enzyme Involved in Biosynthesis of Acetylated Nodusmicin. Biotechnol Bioproc E 25, 414–420 (2020). https://doi.org/10.1007/s12257-019-0455-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0455-1

Keywords

Navigation