Skip to main content
Log in

Electricity Effectively Utilization by Integrating Microbial Fuel Cells with Microbial Immobilization Technology for Denitrification

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We report a novel strategy of integrating microbial fuel cell (MFC) with microbial immobilization technology (MIT) in a sequencing batch reactor (SBR) to test the performance of nitrate removal for the first time. Results showed that MFC could enhance nitrate removal in the novel integrated system, especially for wastewater with low carbon-to-nitrogen ratios, and the nitrate removal efficiency reached 91.35% in the lab-scale integrated system, including 12.25% nitrate consumption by MFC in one typical cycle. The anode of MFC recovered energy in the form of electricity, floating cathode of MFC prevented the loss of immobilized denitrifying bacteria particles and degraded a portion of nitrate, and the maximum voltage production of MFC was 0.246 V. The novel integrated system in this paper showed excellent nitrate removal performance and it will be a highly potential novel setup for efficient nitrate removal of wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCarty, P. L. (2018) What is the best biological process for nitrogen removal: when and why? Environ. Sci. Technol. 52: 3835–3841.

    CAS  PubMed  Google Scholar 

  2. Shannon, M. A., P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes (2008) Science and technology for water purification in the coming decades. Nature. 452: 301–310.

    CAS  PubMed  Google Scholar 

  3. Ji, B., K. Yang, L. Zhu, Y. Jiang, H. Wang, J. Zhou, and H. Zhang (2015) Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioprocess Eng. 20: 643–651.

    CAS  Google Scholar 

  4. Wang, D., G. Wang, F. Yang, C. Liu, L. Kong, and Y. Liu (2018) Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor. Chemosphere. 208: 854–861.

    CAS  PubMed  Google Scholar 

  5. Liu, J., Y. Yuan, B. Li, Q. Zhang, L. Wu, X. Li, and Y. Peng (2017) Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source. Bioresour. Technol. 244: 1158–1165.

    CAS  PubMed  Google Scholar 

  6. Liu, F., Y. Tian, Y. Ding, and Z. Li (2016) The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation. Bioresour. Technol. 219: 6–13.

    CAS  PubMed  Google Scholar 

  7. Jia, L., R. Wang, L. Feng, X. Zhou, J. Lv, and H. Wu (2018) Intensified nitrogen removal in intermittently-aerated vertical flow constructed wetlands with agricultural biomass: Effect of influent C/N ratios. Chem. Eng. J. 345: 22–30.

    CAS  Google Scholar 

  8. Sekoai, P. T., A. A. Awosusi, K. O. Yoro, M. Singo, O. Oloye, A. O. Ayeni, M. Bodunrin, and M. O. Daramola (2018) Microbial cell immobilization in biohydrogen production: a short overview. Crit. Rev. Biotechnol. 38: 157–171.

    CAS  PubMed  Google Scholar 

  9. Jo, S., S. Park, Y. Oh, J. Hong, H. J. Kim, K. J. Kim, K. K. Oh, and S. H. Lee (2019) Development of cellulose hydrogel microspheres for lipase immobilization. Biotechnol. Bioprocess Eng. 24: 145–154.

    CAS  Google Scholar 

  10. Sekaran, G., S. Karthikeyan, C. Nagalakshmi, and A. B. Mandal (2013) Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater. Environ Sci Pollut Res. 20: 281–291.

    CAS  Google Scholar 

  11. Kim, H. J., J. N. Jin, E. Kan, K. J. Kim, and S. H. Lee (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioprocess Eng. 22: 89–94.

    CAS  Google Scholar 

  12. Dong, H., W. Wang, Z. Song, H. Dong, J. Wang, S. Sun, Z. Zhang, M. Ke, Z. Zhang, W. M. Wu, G. Zhang, and J. Ma (2017) A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane immobilized activated sludge. Bioresour. Technol. 239: 472–481.

    CAS  PubMed  Google Scholar 

  13. Song, S. H., S. S. Choi, K. Park, and Y. J. Yoo (2005) Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme Microb. Technol. 37: 567–573.

    CAS  Google Scholar 

  14. Ranjan, B., S. Pillai, K. Permaul, and S. Singh (2019) Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. J. Hazard. Mater. 363: 73–80.

    CAS  PubMed  Google Scholar 

  15. Katam, K. and D. Bhattacharyya (2019) Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge. J. Ind. Eng Chem. 69: 295–303.

    CAS  Google Scholar 

  16. Sarioglu, O. F., O. Yasa, A. Celebioglu, T. Uyar, and T. Tekinay (2013) Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web. Green Chem. 15: 2566–2572.

    CAS  Google Scholar 

  17. Zhang, Y. and I. Angelidaki (2012) Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Res. 46: 6445–6453.

    CAS  PubMed  Google Scholar 

  18. Cetin, E., E. Karakas, E. Dulekgurgen, S. Ovez, M. Kolukirik, and G. Yilmaz (2018) Effects of high-concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater. Water Res. 131: 74–89.

    CAS  PubMed  Google Scholar 

  19. Zhang, T., M. F. Shao, and L. Ye (2012) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6: 1137–1147.

    CAS  PubMed  Google Scholar 

  20. Seviour, R. J., T. Mino, and M. Onuki (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 27: 99–127.

    CAS  PubMed  Google Scholar 

  21. Saunders, A. M., M. Albertsen, J. Vollertsen, and P. H. Nielsen (2016) The activated sludge ecosystem contains a core community of abundant organisms. ISME J. 10: 11–20.

    CAS  PubMed  Google Scholar 

  22. Flemming, H. C. and S. Wuertz (2019) Bacteria and archaea on earth and their abundance in biofilms. Nat. Rev. Microbiol. 17: 247–260.

    CAS  PubMed  Google Scholar 

  23. Goglio, A., M. Tucci, B. Rizzi, A. Colombo, P. Cristiani, and A. Schievano (2019) Microbial recycling cells (MRCs): A new platform of microbial electrochemical technologies based on biocompatible materials, aimed at cycling carbon and nutrients in agro-food systems. Sci. Total Environ. 649: 1349–1361.

    CAS  PubMed  Google Scholar 

  24. Shu, D., Y. He, H. Yue, and Q. Wang (2015) Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresour. Technol. 186: 163–172.

    CAS  PubMed  Google Scholar 

  25. Yang, Q., H. Zhao, N. Zhao, J. Ni, and X. Gu (2016) Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system. Bioresour. Technol. 216: 182–187.

    CAS  PubMed  Google Scholar 

  26. Santoro, C., C. Arbizzani, B. Erable, and I. Ieropoulos (2017) Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources. 356: 225–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, H. and Z. J. Ren (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31: 1796–1807.

    PubMed  Google Scholar 

  28. Uria, N., I. Ferrera, and J. Mas (2017) Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol. 17: 208.

    PubMed  PubMed Central  Google Scholar 

  29. Clauwaert, P., K. Rabaey, P. Aelterman, L. De Schamphelaire, T. H. Pham, P. Boeckx, N. Boon, and W. Verstraete (2007) Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 41: 3354–3360.

    CAS  PubMed  Google Scholar 

  30. Virdis, B., K. Rabaey, R. A. Rozendal, Z. Yuan, and J. Keller (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res. 44: 2970–2980.

    CAS  PubMed  Google Scholar 

  31. Huang, H., S. Cheng, F. Li, Z. Mao, Z. Lin, and K. Cen (2019) Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells. Chemosphere. 225: 548–556.

    CAS  PubMed  Google Scholar 

  32. Srinivasan, V., J. Weinrich, and C. Butler (2016) Nitrite accumulation in a denitrifying biocathode microbial fuel cell. Environ. Sci. Water Res. Technol. 2: 344–352.

    CAS  Google Scholar 

  33. Wang, X., Y. Tian, H. Liu, X. Zhao, and Q. Wu (2019) Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland-microbial fuel cell systems. Bioresour. Technol. 271: 492–495.

    CAS  PubMed  Google Scholar 

  34. Du, Z., H. Li, and T. Gu (2007) A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464–482.

    CAS  PubMed  Google Scholar 

  35. Hang, Q., H. Wang, Z. Chu, B. Ye, C. Li, and Z. Hou (2016) Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development. Environ. Sci. Pollut. Res. 23: 8260–8274.

    CAS  Google Scholar 

  36. Liu, X. W., Y. P. Wang, Y. X. Huang, X. F. Sun, G. P. Sheng, R. I. Zeng, F. Li, F. Dong, S. G. Wang, Z. H. Tong, and H. Q. Yu (2011) Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example. Biotechnol. Bioeng. 108: 1260–1267.

    CAS  PubMed  Google Scholar 

  37. Xiao, B., M. Luo, X. Wang, Z. Li, H. Chen, I. Liu, and X. Guo (2017) Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process. Waste Manag. 69: 346–352.

    CAS  PubMed  Google Scholar 

  38. Liu, W., H. Jia, I. Wang, H. Zhang, C. Xin, and Y. Zhang (2018) Microbial fuel cell and membrane bioreactor coupling system: recent trends. Environ. Sci. Pollution Res. 25: 23631–23644.

    Google Scholar 

  39. Hou, L., I. Li, Z. Zheng, Q. Sun, Y. Liu, and K. Zhang (2019) Cultivating river sediments into efficient denitrifying sludge for treating municipal wastewater. R Soc. Open Sci. 6: 190304.

    PubMed  PubMed Central  Google Scholar 

  40. Rice, E. W., R. B. Baird, A. D. Eaton, and L. S. Clesceri (2012) Standard Methods for the Examination of Water and Wastewater. 22nd ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, USA.

    Google Scholar 

  41. Jayashree, C., S. Sweta, P. Arulazhagan, I. T. Yeom, M. I. I. Iqbal, and J. R. Banu (2015) Electricity generation from retting wastewater consisting of recalcitrant compounds using continuous upflow microbial fuel cell. Biotechnol. Bioprocess Eng. 20: 753–759.

    CAS  Google Scholar 

  42. Kondaveeti, S., S. H. Lee, H. D. Park, and B. Min (2014) Bacterial communities in a bioelectrochemical denitrification system: The effects of supplemental electron acceptors. Water Res. 51: 25–36.

    CAS  PubMed  Google Scholar 

  43. Logan, B. E., B. Hamelers, R. Rozendal, U. Schrorder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey (2006) Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181–5192.

    CAS  PubMed  Google Scholar 

  44. Kondaveeti, S., E. Kang, H. Liu, and B. Min (2019) Continuous autotrophic denitrification process for treating ammonium-rich leachate wastewater in bioelectrochemical denitrification system (BEDS). Bioelectrochemistry. 130: 107340.

    CAS  PubMed  Google Scholar 

  45. Logan, B. E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7: 375–381.

    CAS  PubMed  Google Scholar 

  46. Bernat, K., I. Wojnowska-Baryla, and A. Dobrzynska (2008) Denitrification with endogenous carbon source at low C/N and its effect on P(3HB) accumulation. Bioresour. Technol. 99: 2410–2418.

    CAS  PubMed  Google Scholar 

  47. Wu, Y., Q. Yang, Q. Zeng, H. H. Ngo, W. Guo, and H. Zhang (2017) Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode. Chem. Eng. J. 316: 315–322.

    CAS  Google Scholar 

  48. Xie, X., M. Ye, P. C. Hsu, N. Liu, C. S. Criddle, and Y. Cui (2013) Microbial battery for efficient energy recovery. Proc. Natl. Acad. Sci. USA. 110: 15925–15930.

    CAS  PubMed  Google Scholar 

  49. Hou, L., J. Li, and Y. Liu (2019) Microbial communities variation analysis of denitrifying bacteria immobilized particles. Process Biochem. 87: 151–156.

    CAS  Google Scholar 

  50. Chan, Y. I., M. F. Chong, C. L. Law, and D. G. Hassell (2009) A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155: 1–18.

    CAS  Google Scholar 

  51. Rismani-Yazdi, H., S. M. Carver, A. D. Christy, and O. H. Tuovinen (2008) Cathodic limitations in microbial fuel cells: An overview. J. Power Sources. 180: 683–694.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (No.2017ZX07103-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Ethics declarations

There are no conflicts of interest to declare. Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Lg., Yang, Qz. & Li, J. Electricity Effectively Utilization by Integrating Microbial Fuel Cells with Microbial Immobilization Technology for Denitrification. Biotechnol Bioproc E 25, 470–476 (2020). https://doi.org/10.1007/s12257-019-0470-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0470-2

Keywords

Navigation