Skip to main content
Log in

Identification and Characterization of a Cocoon Degradable Enzyme from the Isolated Strain Bacillus subtilis Bs5C

  • Research Paper
  • Enzyme Biotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A fibroin-degrading bacterium was isolated in a medium containing fibroin as a sole nitrogen source, and then identified and characterized. The strain was designated Bacillus subtilis strain Bs5C, and the culture medium containing the extracellular proteolytic enzymes was found to hydrolyze cocoon fiber. A decomposition rate of 35% was achieved with the culture medium in optimized cocoon-degrading condition. In a second round of decomposition performed on the same fibers with additional culture medium, the decomposition rate reached 45.9%. To investigate the proteolytic enzymes degrading cocoon, the enzymes was purified from culture medium using ion exchange column and identified using LC-MS/MS analysis system. As a result, it was uncovered that the cocoon degradation was due to the neutral protease NprE of the strain Bs5C. Moreover, the cocoon fibers treated with semi-purified NprE enzyme solution were clearly split and degraded, as assessed by SEM, and solubilized peptides from fibroin and sericin were detected by LC-MS/MS. In conclusion, this study is the first report that peptides could be produced from cocoon by cultured medium of B. subtilis, and the newly isolated strain Bs5C and the NprE protease from the strain Bs5C could clearly be valuable for the production of silk peptides, which have various pharmacological and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung, H., Y. Y. Kim, B. Kim, H. Nam, and J. G. Suh (2017) Improving glycemic control in model mice with type 2 diabetes by increasing superoxide dismutase (SOD) activity using silk fibroin hydrolysate (SFH). Biochem. Biophys. Res. Commun. 493: 115–119.

    Article  CAS  Google Scholar 

  2. Do, S. G., J. H. Park, H. Nam, J. B. Kim, J. Y. Lee, Y. S. Oh, and J. G. Suh (2012) Silk fibroin hydrolysate exerts an anti-diabetic effect by increasing pancreatic β cell mass in C57BL/KsJ-db/db mice. J. Vet. Sci. 13: 339–344.

    Article  Google Scholar 

  3. Lapphanichayakool, P., M. Sutheerawattananonda, and N. Limpeanchob (2017) Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats. J. Nat. Med. 71: 208–215.

    Article  CAS  Google Scholar 

  4. Deori, M., D. Devi, S. Kumari, A. Hazarika, H. Kalita, R. Sarma, and R. Devi (2016) Antioxidant effect of sericin in brain and peripheral tissues of oxidative stress induced hypercholesterolemic rats. Front. Pharmacol. 7: 319.

    Article  Google Scholar 

  5. Kato, N., S. Sato, A. Yamanaka, H. Yamada, N. Fuwa, and M. Nomura (1998) Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. 62: 145–147.

    Article  CAS  Google Scholar 

  6. Selvaraj, S. and N. N. Fathima (2017) Fenugreek incorporated silk fibroin nanofibers-a potential antioxidant scaffold for enhanced wound healing. ACS Appl. Mater. Interaces. 9: 5916–5926.

    Article  CAS  Google Scholar 

  7. Dash, R., C. Acharya, P. C. Bindu, and S. C. Kundu (2008) Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Rep. 41: 236–241.

    Article  CAS  Google Scholar 

  8. Cha, Y., S. H. Lee, S. K. Jang, H. Guo, Y. H. Ban, D. Park, G. Y Jang, S. Yeon, J. Y. Lee, E. K. Choi, S. S. Joo, H. S. Jeong, and Y. B. Kim (2017) A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene. Toxicol. Appl. Pharmacol. 314: 48–54.

    Article  CAS  Google Scholar 

  9. Altman, G. H., F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan (2003) Silk-based biomaterials. Biomaterials. 24: 401–416.

    Article  CAS  Google Scholar 

  10. Kim, B. K., O. H. Kwon, W. H. Park, and D. Cho (2016) Thermal, mechanical, impact, and water absorption properties of novel silk fibroin fiber reinforced poly(butylene succinate) biocomposites. Macromol. Res. 24: 734–740.

    Article  CAS  Google Scholar 

  11. Horan, R. L., K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman (2005) In vitro degradation of silk fibroin. Biomaterials. 26: 3385–3393.

    Article  CAS  Google Scholar 

  12. Vepari, C. and D. L. Kaplan (2007) Silk as a biomaterial. Prog. Polym. Sci. 32: 991–1007.

    Article  CAS  Google Scholar 

  13. Drnovšek, N., R. Kocen, A. Gantar, M. Drobnič-Košorok, A. Leonardi, I. Križaj, A. Rečnik, and S. Novak (2016) Size of silk fibroin β-sheet domains affected by Ca2+. J. Mater. Chem. B. 4: 6597–6608.

    Article  Google Scholar 

  14. Wongnarat, C. and P. Srihanam, (2013) Degradation behaviors of Thai bombyx mori silk fibroins exposure to protease enzymes. Engineering. 5: 61–66.

    Article  Google Scholar 

  15. Joung, J. A., M. N. Park, J. Y. You, B. J. Song, and J. H. Choi (2018) Application of food-grade proteolytic enzyme for the hydrolysis of regenerated silk fibroin from Bombyx mori. J. Chem. 2018: 1285823.

    Article  Google Scholar 

  16. Eom, S. J., N. H. Lee, M. C. Kang, Y. H. Kim, T. G. Lim, and K. M. Song (2020) Silk peptide production from whole silkworm cocoon using ultrasound and enzymatic treatment and its suppression of solar ultraviolet-induced skin inflammation. Ultrason. Sonochem. 61: 104803.

    Article  CAS  Google Scholar 

  17. Forlani, G., A. M. Seves, and O. Ciferri (2000) A bacterial extracellular proteinase degrading silk fibroin. Int. Biodeterior. Biodegradation. 46: 271–275.

    Article  CAS  Google Scholar 

  18. Suwannaphan, S., E. Fufeungsombut, A. Promboon, and P. Chimanage (2017) A serine protease from newly isolated Bacillus sp. for efficient silk degumming, sericin degrading and colour bleaching activities. Int. Biodeterior. Biodegradation. 117: 141–149

    Article  CAS  Google Scholar 

  19. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.

    Article  CAS  Google Scholar 

  20. Kumar, S., G. Stecher, and K. Tamura (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874.

    Article  CAS  Google Scholar 

  21. Choi, N. S., D. M. Chung, C. H. Ryu, K. S. Yoon, P. J. Maeng, and S. H. Kim (2006) Identification of three extracellular proteases from Bacillus subtilis KCTC 3014. J. Microbiol. Biotechnol. 16: 457–464.

    CAS  Google Scholar 

  22. Shin, S., S. Yeon, D. Park, J. Oh, H. Kang, S. Kim, S. S. Joo, W. T. Lim, J. Y. Lee, K. C. Choi, K. Y. Kim, S. U. Kim, J. C. Kim, and Y. B. Kim (2010) Silk amino acids improve physical stamina and male reproductive function of mice. Biol. Pharm. Bull. 33: 273–278.

    Article  CAS  Google Scholar 

  23. Kim, T. K., D. Park, S. Yeon, S. H. Lee, Y. J. Choi, D. K. Bae, Y. H. Yang, G. Yang, S. S. Joo, W. T. Lim, J. Y. Lee, J. S. Lee, H. S. Jeong, S. Y. Hwang, and Y. B. Kim (2011) Tyrosine-fortified silk amino acids improve physical function of Parkinson’s disease rats. Food Sci. Biotechnol. 20: 79–84.

    Article  CAS  Google Scholar 

  24. Park, S., T. Zhang, J. Y. Qiu, and X. Wu (2019) The combination of mulberry extracts and silk amino acids alleviated high fat diet-induced nonalcoholic hepatic steatosis by improving hepatic insulin signaling and normalizing gut microbiome dysbiosis in rats. Evid. Based Complement Alternat. Med. 2019: 8063121.

    PubMed  PubMed Central  Google Scholar 

  25. Mahmoodi, N. M., M. Arami, F. Mazaheri, and S. Rahimi (2010) Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J. Clean. Prod. 18: 146–151.

    Article  CAS  Google Scholar 

  26. Hadjidj, R., A. Badis, S. Mechri, K. Eddouaouda, L. Khelouia, R. Annane, M. El Hattab, and B. Jaouadi (2018) Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int. J. Biol. Macromol. 114: 1033–1048.

    Article  CAS  Google Scholar 

  27. Wang, L. F., S. M. Ekkel, and R. J. Devenish (1990) Expression in Escherichia coli of the Bacillus subtilis neutral protease gene (NPRE) lacking its ribosome binding site. Biochem. Int. 22: 1085–1093.

    CAS  PubMed  Google Scholar 

  28. Wang, H., L. Yang, Y. Ping, Y. Bai, H. Luo, H. Huang, and B. Yao (2016) Engineering of a Bacillus amyloliquefaciens strain with high neutral protease producing capacity and optimization of its fermentation conditions. PLoS One. 11: e0146373.

    Article  Google Scholar 

  29. Rajkhowa, R., X. Hu, T. Tsuzuki, D. L. Kaplan, and X. Wang (2012) Structure and biodegradation mechanism of milled Bombyx mori silk particles. Biomacromolecules. 13: 2503–2512.

    Article  CAS  Google Scholar 

  30. Lu, Q., B. Zhang, M. Li, B. Zuo, D. L. Kaplan, Y. Huang, and H. Zhud (2011) Degradation mechanism and control of silk fibroin. Biomacromolecules. 12: 1080–1086.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program.

The authors declare that there are no conflicts of interest. Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Young Kang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H.D., Cho, M.S., Kim, JS. et al. Identification and Characterization of a Cocoon Degradable Enzyme from the Isolated Strain Bacillus subtilis Bs5C. Biotechnol Bioproc E 25, 442–449 (2020). https://doi.org/10.1007/s12257-019-0399-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0399-5

Keywords

Navigation