Skip to main content
Log in

Functional Microbial Pigments Isolated from Chryseobacterium and Deinococcus species for Bio-paint Application

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, bioproduction and application of a microbial pigment from Chryseobacterium and Deinococcus species screened from soil were investigated. The pigments extracted from both cell cultures were identified as a flexirubin (FL)- and deinoxanthin-type (DX). The isolated pigments showed a mass value of 618.48 and 584.41 m/z by LC/MS, respectively. Flask production of the crude FL pigment in complex medium yielded 0.443 ± 0.047 g/L, while crude DX production was less than 20 mg/L. Similar to previously identified FL and DX pigments, both have unsaturated long-chain alkyl-substituted phenol and cyclo-hexanone units and showed excellent radical scavenging capacities of 0.6 and 3.2 mg/mL IC50 values, respectively. In order to utilize the pigments for functional painting materials, both pigments were mixed with casein paint to prepare FL bio-paint and DX bio-paint, respectively. Interestingly, yellow-colored FL bio-paint and red-colored DX bio-paint showed an outstanding coloration and coating performance onto glass plate. Furthermore, it was confirmed that the produced DX bio-paint had a unique crystal structure when analyzed by SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tuli, H. S., P. Chaudhary, V. Beniwal, and A. K. Sharma (2015) Microbial pigments as natural color sources: current trends and future perspectives J. Food Sci. Technol. 52: 4669–4678.

    CAS  PubMed  Google Scholar 

  2. Baez, L. A., J. Santos, P. Ramirez, L. A. Trujillo-Cayado, and J. Munoz (2019) Development of emulgels formulated with sweet fennel oil and rhamsan gum, a biological macromolecule produced by Sphingomonas. Int. J. Biol. Macromol. 129: 326–332.

    CAS  PubMed  Google Scholar 

  3. Chandika, P., S. C. Ko, and W. K. Jung (2015) Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration Int. J. Biol. Macromol. 11: 24–35.

    Google Scholar 

  4. Hu, Y. L., J. Y. Luo, H. Z. Zhao, S. S. Zhang, S. H. Yang, and M. H. Yang (2016) Application of natural plant pigment in hair dyes Zhongguo Zhong Yao Za Zhi. 41: 3226–3231.

    PubMed  Google Scholar 

  5. Masuelli, L., F. Pantanella, G. La Regina, M. Benvenuto, M. Fantini, R. Mattera, E. Di Stefano, M. Mattei, R. Silvestri, S. Schippa, V. Manzari, A. Modesti, and R. Bei (2016) Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour. Biol. 37: 3705–3717.

    CAS  PubMed  Google Scholar 

  6. Irimia-Vladu, M., E. D. Glowacki, P. A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, M. A. Bodea, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci (2012) Indigo–a natural pigment for high performance ambipolar organic field effect transistors and circuits Adv. Mater. 24: 375–380.

    CAS  PubMed  Google Scholar 

  7. Kong, K. W., H. E. Khoo, K. N. Prasad, A. Ismail, C. P. Tan, and N. F. Rajab (2010) Revealing the power of the natural red pigment lycopene Molecules. 15: 959–987.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Narsing Rao, M. P., M. Xiao, and W. J. Li (2017) Fungal and bacterial pigments: secondary metabolites with wide applications Front. Microbiol. 8: 1113.

    PubMed  PubMed Central  Google Scholar 

  9. Abed, R. M., S. Al Kharusi, A. Schramm, and M. D. Robinson (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman FEMS Microbiol. Ecol. 72: 418–428.

    CAS  PubMed  Google Scholar 

  10. Venil, C. K., Z. A. Zakaria, and W. A. Ahmad (2013) Bacterial pigments and their applications Process Biochem. 48: 1065–1079.

    CAS  Google Scholar 

  11. Numan, M., S. Bashir, R. Mumtaz, S. Tayyab, N. U. Rehman, A. L. Khan, Z. K. Shinwari, and A. Al-Harrasi (2018) Therapeutic applications of bacterial pigments: a review of current status and future opportunities 3 Biotech. 8: 207.

    PubMed  PubMed Central  Google Scholar 

  12. Iwashina, T. (2015) Flavonoid properties in plant families synthesizing betalain pigments (review) Nat. Prod. Commun. 10: 1103–1114.

    PubMed  Google Scholar 

  13. Chitra, G, D. S. Franklin, S. Sudarsan, M. Sakthivel, and S. Guhanathan (2017) Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications Int. J. Biol. Macromol. 95: 363–375.

    CAS  Google Scholar 

  14. Shahid Ul, I. and B. S. Butola (2019) Effect of chitosan biological macromolecule on colorimetric analysis and radical scavenging activity of linen using pineapple peel extract biomolecules Int. J. Biol. Macromol. 124: 708–715.

    Google Scholar 

  15. Reichenbach, H., W. Kohl, A. Bottger-Vetter, and H. Achenbach (1980) Flexirubin-type pigments in Flavobacterium. Arch. Microbiol. 126: 291–293.

    CAS  Google Scholar 

  16. Achenbach, H., W. Kohl, W. Wachter, and H. Reichenbach (1978) Investigations of the pigments from Cytophaga johnsonae Cy jl. New flexirubin-type pigments Arch. Microbiol. 117: 253–257.

    CAS  PubMed  Google Scholar 

  17. Kulandaisamy Venil, C., Z. A. Zakaria, R. Usha, and W. A. Ahma (2014) Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T Biocatal. Agric. Biotechnol. 3: 103–107.

    Google Scholar 

  18. Venil, C. K., P. Sathishkumar, M. Malathi, R. Usha, R. Jayakumar, A. R. M. Yusoff, and W. A. Ahmad (2016) Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity Mater. Sci. Eng C Mater. Biol. Appl. 59: 228–234.

    CAS  PubMed  Google Scholar 

  19. Ji, H. F. (2010) Insight into the strong antioxidant activity of deinoxanthin, a unique carotenoid in Deinococcus radiodurans. Int. J. Mol. Sci. 11: 4506–4510.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Y., H. Zhu, X. Lei, H. Zhang, C. Guan, Z. Chen, W. Zheng, H. Xu, Y. Tian, Z. Yu, and T. Zheng (2015) The first evidence of deinoxanthin from Deinococcus sp. Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. J. Hazard. Mater. 290: 87–95.

    CAS  PubMed  Google Scholar 

  21. Suresh, K., G. S. N. Reddy, S. Sengupta, and S. Shivaji (2004) Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India Int. J. Syst. Evol. Microbiol. 54: 457–461.

    CAS  PubMed  Google Scholar 

  22. Lai, W. A., P. Kampfer, A. B. Aran, F. T. Shen, B. Huber, P. D. Rekha, and C. C. Young (2006) Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L Int. J. Syst. Evol. Microbiol. 56: 787–791.

    CAS  PubMed  Google Scholar 

  23. Wang, W., J. Mao, Z. Zhang, Q. Tang, Y. Xie, J. Zhu, L. Zhang, Z. Liu, Y. Shi, and M. Goodfellow (2010) Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil Int. J. Syst. Evol. Microbiol. 60: 2006–2010.

    CAS  PubMed  Google Scholar 

  24. Chaudhary, R., A. Gupta, S. Kota, and H. S. Misra (2019) N-terminal domain of DivIVA contributes to its dimerization and interaction with genome segregation proteins in a radioresistant bacterium Deinococcus radiodurans. Int. J. Biol. Macromol. 128: 12–21.

    CAS  PubMed  Google Scholar 

  25. Seo, D. H., J. H. Jung, and C. S. Park (2019) Improved polymerization activity of Deinococcus geothermalis amylosucrase by semi-rational design: Effect of loop flexibility on the polymerization reaction Int. J. Biol. Macromol. 130: 177–185.

    CAS  PubMed  Google Scholar 

  26. Lee, D., S. Cha, J. H. Jang, and T. Seo (2016) Deinococcus arenae sp. nov., a novel species isolated from sand in South Korea Antonie Van Leeuwenhoek. 109: 1055–1062.

    CAS  PubMed  Google Scholar 

  27. Xu, X., L. Jiang, Z. Zhang, Y. Shi, and H. Huang (2013) Genome sequence of a gamma- and UV-ray-resistant strain, Deinococcus wulumuqiensis R12 Genome Announc. 1: e00206–13.

    PubMed  PubMed Central  Google Scholar 

  28. Hong, S., C. E. Farrance, A. Russell, and H. Yi (2015) Reclassification of Deinococcus xibeiensis Wang et al. 2010 as a heterotypic synonym of Deinococcus wulumuqiensis Wang etal. 2010 Int. J. Syst. Evol. Microbiol. 65: 1083–1085.

    CAS  PubMed  Google Scholar 

  29. Bruch, E. M., A. de Groot, S. Un, and L. C. Tabares (2015) The effect of gamma-ray irradiation on the Mn(II) speciation in Deinococcus radiodurans and the potential role of Mn(II)-orthophosphates Metallomics. 7: 908–916.

    CAS  PubMed  Google Scholar 

  30. Diaz, B. and D. Schulze-Makuch (2006) Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-Irradiation conditions, and their relevance to possible Martian life Astrobiology. 6: 332–347.

    CAS  PubMed  Google Scholar 

  31. S. Namgung, H. A. Park, J. Kim, P. G. Lee, B. G. Kim, Y. H. Yang, and K. Y. Choi (2019) Ecofriendly one-pot biosynthesis of indigo derivative dyes using CYP102G4 and PrnA halogenase Dyes Pigm. 162: 80–88.

    Google Scholar 

  32. S. Y. Aim, M. Choi, D. Jeong, S. Park, H. Park, K. S. Jang, and K. Y. Choi (2019) Synthesis and chemical composition analysis of protocatechualdehyde-based novel melanin dye by 15T FT-ICR: High dyeing performance on soft contact lens Dyes Pigm. 160: 546–554.

    Google Scholar 

  33. Yabe, S., Y. Sakai, K. Abe, and A. Yokota (2017) Diversity of Ktedonobacteria with actinomycetes-like morphology in terrestrial environments Microbes Environ. 32: 61–70.

    PubMed  PubMed Central  Google Scholar 

  34. Tai, C. J., H. P. Kuo, F. L. Lee, H. K. Chen, A. Yokota, and C. C. Lo (2006) Chryseobacterium taiwanense sp. nov, isolated from soil in Taiwan Int. J. Syst. Evol. Microbiol. 56: 1771–1776.

    CAS  PubMed  Google Scholar 

  35. Chaudhary, D. K. and J. Kim (2017) Chryseobacterium nepalense sp. nov., isolated from oil-contaminated soil Int. J. Syst. Evol. Microbiol. 67: 646–652.

    CAS  PubMed  Google Scholar 

  36. Huq, M. A. (2018) Chryseobacterium chungangensis sp. nov., a bacterium isolated from soil of sweet gourd garden Arch. Microbiol. 200: 581–587.

    CAS  PubMed  Google Scholar 

  37. Guo, W, J. Li, M. Shi, K. Yuan, N. Li, and G. Wang (2016) Chryseobacterium montanum sp. nov. isolated from mountain soil Int. J. Syst. Evol. Microbiol. 66: 4051–4056.

    CAS  PubMed  Google Scholar 

  38. Xu, X., L. Tian, J. Xu, C. Xie, L. Jiang, and H. Huang (2018) Analysis and expression of the carotenoid biosynthesis genes from Deinococcus wulumuqiensis R12 in engineered Escherichia coli. AMB Express. 8: 94.

    PubMed  PubMed Central  Google Scholar 

  39. Chanudom, L. and J. Tangpong (2015) Anti-inflammation property of Syzygium cumini (L.) Skeels on indomethacin-induced acute gastric ulceration Gastroenterol Res. Pract. 2015: 343642.

    PubMed  PubMed Central  Google Scholar 

  40. Jimenez, M. E. P., C. M. B. Pinilla, E. Rodrigues, and A. Brandelli (2018) Extraction and partial characterisation of antioxidant pigment produced by Chryseobacterium sp. kr6 Nat. Prod. Res. 33: 1541–1549.

    PubMed  Google Scholar 

  41. Ordenes-Aenishanslins, N., G. Anziani-Ostuni, M. Vargas-Reyes, J. Alarcon, A. Tello, and J. M. Perez-Donoso (2016) Pigments from UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized solar cells J. Photochem. Photobiol B. 162: 707–714.

    CAS  PubMed  Google Scholar 

  42. Dzeha, T., C. Nyiro, D. Kardasopoulos, D. Mburu, J. Mwafaida, M. J. Hall, and J. G. Burgess (2018) UV resistance of bacteria from the Kenyan Marine cyanobacterium Moorea producens. Microbiologyopen. 8: e00697.

    PubMed  PubMed Central  Google Scholar 

  43. C. K. Venil, Z. A. Zakaria, R. Ush, and W. A. Ahmad (2014) Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T Biocatal. Agric. Biotechnol. 3: 103–107.

    Google Scholar 

  44. Lysenko, V. S., V. A. Chistyakov, D. V. Zimakov, V. G. Soier, M. A. Sazykina, M. I. Sazykina, I. S. Sazykin, and V. P. Krasnov (2011) Separation and mass spectrometry identification of carotenoid complex from radioresistant bacteria Deinococcus radiodurans. J. Anal. Chem. 66: 1281–1284.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korea government (MEST) (2018R1D1A1B07046920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Young Choi.

Ethics declarations

Declarations of Competing Interest The authors declare no conflict of interests.

Ethical Statement Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.A., Ahn, SY. & Choi, KY. Functional Microbial Pigments Isolated from Chryseobacterium and Deinococcus species for Bio-paint Application. Biotechnol Bioproc E 25, 394–402 (2020). https://doi.org/10.1007/s12257-019-0372-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0372-3

Keywords

Navigation